Терморегуляторы для отопления: принципы работы и основы правильного монтажа. Применение регуляторов и датчиков температуры

Хочу рассказать о создании несложного устройства, которое сильно облегчило жизнь домашним обитателям - автоматический регулятор температуры газовой колонки. Подобные устройства уже создавались и описывались здесь на хабре, хотелось сделать чуть более продвинутый девайс и подробно описать весь процесс создания от задумки и измерения до реализации, без использования готовых модулей типа Arduino. Устройство будет собрано на макетной плате, язык программирования - C. Это моя первая разработка законченного (и работающего!) устройства.

1. Исходные данные

Мы живем на съёмной квартире, которая обладает одним очень неприятным свойством: в доме нет горячей воды, холодная вода нагревается на месте при помощи нагревателя (Водонагреватель Проточный Газовый - ВПГ ), который расположен на кухне. Во время принятия душа если происходит очередной скачок давления - приходится голышом шлепать до колонки или звать кого-нибудь. Интегрировать полноценный «умный дом» возможности нет, поэтому решено было внедрить автоматическое регулирование нагревателя. К слову, довольно быстро нашел несколько похожих решений, например , а значит проблема моя известна и решена в своем виде.

Модель ВПГ: Vector lux eco 20-3 (китай)
Давление воды: около 1.5 кгс/см² (давление низкое, нагреватель работает чуть выше допустимого предела)

Требования к решению

  • Простота
  • ПИД-регулятор или его подобие
  • Возможность выбора поддерживаемой температуры
  • Отображение текущих параметров
  • Решение вопросов безопасности устройства

Архитектура системы

После некоторых размышлений архитектура устройства была набросана следующим образом:
  • Сервопривод (непосредственно в теле ВПГ)
  • Термодатчик штатный ВПГ
  • Блок усиления сигнала термодатчика и стабилизатор питания сервопривода (непосредственно в теле ВПГ)
  • Блок управления (внешний)
Далее опишу процесс разработки в хронологическом порядке.

2. Сервопривод

Так как профессия у меня программная и механика всегда оставалась самой сложной частью - начать решил с неё. Надо сказать что к первому этапу долго не мог собраться, ВПГ очень боязно было трогать, но очередной перепадок давления вынудил меня начать.

Разобрав колонку и осмотревшись - нашёл места для установки сервомашинки TowerPro MG995, как-то давно заказанной «на сдачу» на aliexpress.

Для устранения люфта привода тяг сделал одну тягу подпружиненной. Люфт был полностью устранен, но выяснилась другая проблема - сервомашинка с моментом > 10 кг*см оказалась слишком дерзкой для ВПГ. При включении переходные процессы в электронике машинки вызывают рывок в рандомное положение и через пару холостых включений тяга оказалась погнутой! Силумин колонки точно не выдержит такого обращения. Так же вызывала нарекания геометрия качалки, которая была не на оси регулятора - что приводило к нелинейности регулировки. Финальный вид узла привода дросселя:

Узел переделан - использованы пружины от ВАЗ (от карбюратора - куплены в магазине автозапчастей) и качалка теперь на геометрической оси вала. Такая конструкция имеет небольшой люфт, но зато линейна в регулировке и может демпфировать бешенство рулевой машинки. Углы выставлены на оптимальные значения для регулировки в наиболее востребованных положениях регулятора.

3. Блок датчиков ВПГ

Терморезистор ВПГ меняет своё сопротивление в пределах 20..50 КОм, использовать напрямую в качестве делителя проблематично - получим низкую точность измерения. Но как оказалась на практике - при повышении питающего напряжения до 12В можно без проблем получить приемлемый диапазон выходного сигнала - только использовать ОУ в режиме повторителя (при необходимости можно поменять коэффициент усиления) для изоляции делителя от нагрузки. Схема блока внутри ВПГ:

Делитель R2 и термодатчик колонки формирует сигнал с напряжением 1.4..4.96 В в полном диапазоне измерений (на практике - 20..60 градусов цельсия). Изначально разработал мостовую схему - которая может компенсировать уход источника питания, но была отброшена из-за того что источник питания влиял слабо, а первый пункт «ТЗ» был - «простота». Операционный усилитель обеспечивает развязку делителя и нагрузки. Стабилитрон D1 ограничивает выходное напряжение на уровне 5.1 В для случаев отсоединения датчика (в противном случае на выходе было бы 12В - что смертельно опасно для контроллера) - что схемой контроллера будет считаться безусловной ошибкой. Интегральный стабилизатор 7805 питает сервомашинку - решение неудачное, при стопоре машинки он ужасно нагревается и думаю может выйти из строя при клине привода (если не сработает встроенная защита). Более на этом блоке не буду заострять внимание.

4. Контроллер

Контроллер собран на базе ИМС Atmega8 в dip-корпусе.

Тактирование - внутренний осцилятор на 8 МГц. Питание - ещё один 7805 на плате. Индикация через стандартный LCD1602 дисплей. Схема блока:

Управление питанием блока осуществляется от колонки через транзистор - используя малогабаритное реле. Сигнал термодатчика (Контакт №4 разьема) имеет подтяжку на землю и при отсоединении датчика во время работы покажет очень высокую температуру - что приведет к уменьшению регулятора и не вызовет опасных ситуаций. Собранный блок:

4. Испытания и регулировка

Для отработки ПИД-регулятора была написана модель ВПГ на Qt. На ней были отработаны основные моменты и ситуации работы нагревателя - старт холодный/горячий, перепады давления. Для снятия характеристик был добавлен UART-разьем на плату контроллера, куда раз в секунду отправлялись данные о показателях - текущая температура, положение дросселя и т.д.

При испытаниях выявилось следующее:

  • Очень большая инерция ВПГ от начала воздействия до реакции на термодатчике - порядка 30 секунд
  • Округление до градуса в микропрограмме контроллера - плохая идея, алгоритм может работать более точно

Результаты измерения и калибровки термодатчика, Зависимость можно считать условно-линейной:

Первые прогоны в программе отрисовки телеметрии от колонки:

(забыл на графики добавить легенду. Здесь и далее - красный - температура датчика, зеленый пунктирный - положение дросселя, синий - желаемая юзером температура)


Почти удачная регулировка


Удачные варианты коэффициентов


Неплохой вариант старта

Первые прогоны показали основные параметры системы, дальше уже не составило труда замерить их и настроить по ускоренной формуле , параметры подбирал долго и мучительно. Полностью от колебаний избавится не удалось, но колебания в пределах 1 градуса считаются приемлемыми. Принятый вариант:

В процессе подбора интегральый коэффициент пришлось полностью отключить, думаю что это из-за большой инерции системы. Итоговые коэффициенты:

Float Pk = 0.2; float Ik = 0.0; float Dk = 0.2;

5. Корпусирование

Устройство собрано в пластмассовом корпусе распределительной коробки.

И в таком виде работает.

6. Безопасность использования

Важный вопрос, которым задавался с самого начала.Пройдемся по основным пунктам.

Гальваническая развязка цепей колонки и регулятора

Что будет если блок питания 12В закоротит и на цепи датчика окажется 220 вольт? Не вызовет это подачу газа в колонку. Как оказалось - не вызовет - в колонке имеется два уровня подачи газа - электромагнитный клапан контроллера и механический клапан воды. Открыть только соленоид мало - газ не поступит без тока воды.

Отключение или отрыв датчика внутри ВПГ

При отключении терморезистора от блока внутри ВПГ на выходе будет генерироваться сигнал 0xFF (5.1В) что проверяется программой как ошибка, контроллер останавлиает выполнение программы, сервопривод выставляется на минимум.

Отключение или отрыв датчика от контроллера

В этом случае генерируется большая температура (подтяжка линии датчика к земле) что приведет к выводу привода в минимальное значение, что так же безопасно для юзера.

Электронно-механическая защита ВПГ

Цени защиты ВПГ остаются функционировать в штатном режиме, в случае кипения/перегрева/датчика тяги колонки штатные системы должны отключить её.

По принципу регулирования все системы автоматического регулирования подразделяются на четыре класса.

1. Система автоматической стабилизации - система, в которой регулятор поддерживает постоянным заданное значение регулируемого параметра.

2. Система программного регулирования - система, обеспечивающая изменение регулируемого параметра по заранее заданному закону (во времени).

3. Следящая система - система, обеспечивающая изменение регулируемого параметра в зависимости от какой-либо другой величины.

4. Система экстремального регулирования - система, в которой регулятор поддерживает оптимальное для изменяющихся условий значение регулируемой величины.

Для регулирования температурного режима электронагревательных установок применяются в основном системы двух первых классов.

Системы автоматического регулирования температуры по роду действия можно разделить на две группы: прерывистого и непрерывного регулирования.

Автоматические регуляторы по функциональным особенностям разделены на пять типов: позиционные (релейные), пропорциональные (статические), интегральные (астатические), изодромные (пропорционально-интегральные), изодромные с предварением и с первой производной.

Позиционные регуляторы относятся к прерывистым САР, а остальные типы регуляторов - к САР непрерывного действия. Ниже рассмотрены основные особенности позиционных, пропорциональных, интегральных и изодромных регуляторов, имеющих наибольшее применение в системах автоматического регулирования температуры.

(рис. 1) состоит из объекта регулирования 1, датчика температуры 2, программного устройства или задатчика уровня температуры 4, регулятора 5 и исполнительного устройства 8. Во многих случаях между датчиком и программным устройством ставится первичный усилитель 3, а между регулятором и исполнительным устройством - вторичный усилитель 6. Дополнительный датчик 7 применяется в изодромных системах регулирования.

Рис. 1. Функциональная схема автоматического регулирования температуры

Позиционные (релейные) регуляторы температуры

Позиционными называют такие регуляторы, у которых регулирующий орган может занимать два или три определенных положения. В электронагревательных установках применяются двух- и трехпозиционные регуляторы. Они просты и надежны в эксплуатации.

На рис. 2 показана принципиальная схема двухпозиционного регулирования температуры воздуха.


Рис. 2. Принципиальная схема двухпозиционного регулирования температуры воздуха: 1 - объект регулирования, 2 - измерительный мост, 3 - поляризованное реле, 4 - обмотки возбуждения электродвигателя, 5 - якорь электродвигателя, 6 - редуктор, 7 - калориф.

Для контроля температуры в объекте регулирования служит термосопротивление ТС, включенное в одно из плеч измерительного моста 2. Величины сопротивлений моста подбираются таким образом, чтобы при заданной температуре мост был уравновешен, то есть напряжение в диагонали моста равнялось нулю. При повышении температуры поляризованное реле 3, включенное в диагональ измерительного моста, включает одну из обмоток 4 электродвигателя постоянного тока, который с помощью редуктора 6 закрывает воздушный клапан перед калорифером 7. При понижении температуры воздушный клапан полностью открывается.

При двухпозиционном регулировании температуры количество подаваемого тепла может устанавливаться только на двух уровнях - максимальном и минимальном. Максимальное количество тепла должно быть больше необходимого для поддержания заданной регулируемой температуры, а минимальное - меньше. В этом случае температура воздуха колеблется около заданного значения, то есть устанавливается так называемый автоколебательный режим (рис. 3, а).

Линии, соответствующие температурам τ н и τ в, определяют нижнюю и верхнюю границы зоны нечувствительности. Когда температура регулируемого объекта, уменьшаясь, достигает значения τ н количество подаваемого тепла мгновенно увеличивается и температура объекта начинает возрастать. Достигнув значения τ в, регулятор уменьшает подачу тепла, и температура понижается.


Рис. 3. Временная характеристика двухпозиционного регулирования (а) и статическая характеристика двухпозиционного регулятора (б).

Скорость повышения и понижения температуры зависит от свойств объекта регулирования и от его временной характеристики (кривой разгона). Колебания температуры не выходят за границы зоны нечувствительности, если изменения подачи тепла сразу вызывают изменения температуры, то есть если отсутствует запаздывание регулируемого объекта .

С уменьшением зоны нечувствительности амплитуда колебаний температуры уменьшается вплоть до нуля при τ н = τ в. Однако для этого требуется, чтобы подача тепла изменялась с бесконечно большой частотой, что практически осуществить чрезвычайно трудно. Во всех реальных объектах регулирования имеется запаздывание. Процесс регулирования в них протекает примерно так.

При понижении температуры объекта регулирования до значения τ н мгновенно изменяется подача тепла, однако из-за запаздывания температура некоторое время продолжает снижаться. Затем она повышается до значения τ в, при котором мгновенно уменьшается подача тепла. Температура продолжает еще некоторое время повышаться, затем из-за уменьшенной подачи тепла температура понижается, и процесс повторяется вновь.

На рис. 3, б приведена статическая характеристика двухпозиционного регулятора . Из нее следует, что регулирующее воздействие на объект может принимать только два значения: максимальное и минимальное. В рассмотренном примере максимум соответствует положению, при котором воздушный клапан (см. рис. 2) полностью открыт, минимум - при закрытом клапане.

Знак регулирующего воздействия определяется знаком отклонения регулируемой величины (температуры) от ее заданного значения. Величина регулирующего воздействия постоянна. Все двухпозиционные регуляторы обладают гистерезисной зоной α , которая возникает из-за разности токов срабатывания и отпускания электромагнитного реле.

Пример использования двухпозиционного регулирования температуры:

Пропорциональные (статические) регуляторы температуры

В тех случаях, когда необходима высокая точность регулирования или когда недопустим автоколебательный процесс, применяют регуляторы с непрерывным процессом регулирования . К ним относятся пропорциональные регуляторы (П-регуляторы) , пригодные для регулирования самых разнообразных технологических процессов.

В тех случаях, когда необходима высокая точность регулирования или когда недопустим автоколебательный процесс, применяют регуляторы с непрерывным процессом регулирования. К ним относятся пропорциональные регуляторы (П-регуляторы), пригодные для регулирования самых разнообразных технологических процессов.

В системах автоматического регулирования с П-регуляторами положение регулирующего органа (у) прямо пропорционально значению регулируемого параметра (х):

y=k1х,

где k1 - коэффициент пропорциональности (коэффициент усиления регулятора).

Эта пропорциональность имеет место, пока регулирующий орган не достигнет своих крайних положений (конечных выключателей).

Скорость перемещения регулирующего органа прямо пропорциональна скорости изменения регулируемого параметра.

На рис. 4 показана принципиальная схема системы автоматического регулирования температуры воздуха в помещении при помощи пропорционального регулятора. Температура в помещении измеряется термометром сопротивления ТС, включенным в схему измерительного моста 1.


Рис. 4. Схема пропорционального регулирования температуры воздуха: 1 - измерительный мост, 2 - объект регулирования, 3 - теплообменник, 4 - конденсаторный двигатель, 5 - фазочувствительный усилитель.

При заданной температуре мост уравновешен. При отклонении регулируемой температуры от заданного значения в диагонали моста возникает напряжение разбаланса, величина и знак которого зависят от величины и знака отклонения температуры. Это напряжение усиливается фазочувствительным усилителем 5, на выходе которого включена обмотка двухфазного конденсаторного двигателя 4 исполнительного механизма.

Исполнительный механизм перемещает регулирующий орган, изменяя поступление теплоносителя в теплообменник 3. Одновременно с перемещением регулирующего органа происходит изменение сопротивления одного из плеч измерительного моста, в результате этого изменяется температура, при которой уравновешивается мост.

Таким образом, каждому положению регулирующего органа из-за жесткой обратной связи соответствует свое равновесное значение регулируемой температуры.

Для пропорционального (статического) регулятора характерна остаточная неравномерность регулирования .

В случае скачкообразного отклонения нагрузки от заданного значения (в момент t1) регулируемый параметр придет по истечении некоторого отрезка времени (момент t2) к новому установившемуся значению (рис. 4). Однако это возможно только при новом положении регулирующего органа, то есть при новом значении регулируемого параметра, отличающегося от заданного на величину δ .

Рис. 5. Временные характеристики пропорционального регулирования

Недостаток пропорциональных регуляторов состоит в том, что каждому значению параметра соответствует только одно определенное положение регулирующего органа. Для поддержания заданного значения параметра (температуры) при изменении нагрузки (расхода тепла) необходимо, чтобы регулирующий орган занял другое положение, соответствующее новому значению нагрузки. В пропорциональном регуляторе этого не происходит, вследствие чего возникает остаточное отклонение регулируемого параметра.

Интегральные (астатические регуляторы)

Интегральными (астатическими) называются такие регуляторы, в которых при отклонении параметра от заданного значения регулирующий орган перемещается более или менее медленно и все время в одном направлении (в пределах рабочего хода) до тех пор, пока параметр снова не примет заданного значения. Направление хода регулирующего органа изменяется лишь тогда, когда параметр переходит через заданное значение.

В интегральных регуляторах электрического действия обычно искусственно создается зона нечувствительности, в пределах которой изменение параметра не вызывает перемещений регулирующего органа.

Скорость перемещения регулирующего органа в интегральном регуляторе может быть постоянной и переменной. Особенностью интегрального регулятора является отсутствие пропорциональной связи между установившимися значениями регулируемого параметра и положением регулирующего органа.

На рис. 6 приведена принципиальная схема системы автоматического регулирования температуры при помощи интегрального регулятора. В ней в отличие от схемы пропорционального регулирования температуры (см. рис. 4) нет жесткой обратной связи.


Рис. 6. Схема интегрального регулирования температуры воздуха

В интегральном регуляторе скорость регулирующего органа прямо пропорциональна величине отклонения регулируемого параметра.

Процесс интегрального регулирования температуры при скачкообразном изменении нагрузки (расхода тепла) отображен на рис. 7 с помощью временных характеристик. Как видно из графика, регулируемый параметр при интегральном регулировании медленно возвращается к заданному значению.

Рис. 7. Временные характеристики интегрального регулирования

Изодромные (пропорционально-интегральные) регуляторы

Изодромное регулирование обладает свойствами как пропорционального, так и интегрального регулирования. Скорость перемещения регулирующего органа зависит от величины и скорости отклонения регулируемого параметра.

При отклонении регулируемого параметра от заданного значения регулирование осуществляется следующим образом. Вначале регулирующий орган перемещается в зависимости от величины отклонения регулируемого параметра, то есть имеет место пропорциональное регулирование. Затем регулирующий орган совершает дополнительное перемещение, которое необходимо для устранения остаточной неравномерности (интегральное регулирование).

Изодромную систему регулирования температуры воздуха (рис. 8) можно получить заменой жесткой обратной связи в схеме пропорционального регулирования (см. рис. 5) упругой обратной связью (от регулирующего органа к движку сопротивления обратной связи). Электрическая обратная связь в изодромной системе осуществляется потенциометром и вводится в систему регулирования через контур, содержащий сопротивление R и емкость С.

В течение переходных процессов сигнал обратной связи вместе с сигналом отклонения параметра воздействует на последующие элементы системы (усилитель, электродвигатель). При неподвижном регулирующем органе, в каком бы положении он ни находился, по мере заряда конденсатора С сигнал обратной связи затухает (в установившемся режиме он равен нулю).

Рис. 8. Схема изодромного регулирования температуры воздуха

Для изодромного регулирования характерно, что неравномерность регулирования (относительная ошибка) с увеличением времени уменьшается, приближаясь к нулю. При этом обратная связь не будет вызывать остаточных отклонений регулируемой величины.

Таким образом, изодромное регулирование приводит к значительно лучшим результатам, чем пропорциональное или интегральное (не говоря уже о позиционном регулировании). Пропорциональное регулирование в связи с наличием жесткой обратной связи происходит практически мгновенно, изодромное - замедленно.

Программные системы автоматического регулирования температуры

Для осуществления программного регулирования необходимо непрерывно воздействовать на настройку (уставку) регулятора так, чтобы регулируемая величина изменялась по заранее заданному закону. С этой целью узел настройки регулятора снабжается программным элементом. Это устройство служащее для установления закона изменения задаваемой величины.

При электронагреве исполнительный механизм САР может воздействовать на включение или отключение секций электронагревательных элементов, изменяя тем самым температуру нагреваемой установки в соответствии с заданной программой. Программное регулирование температуры и влажности воздуха широко применяется в установках искусственного климата.

Автоматическое регулирование - это очень удобно. При помощи терморегулятора для теплиц вы можете поддерживать в сооружении требуемую температуру воздуха.

Виды терморегуляторов и их характеристика

Выделяется множество типов термостатов. Чтобы сделать правильный выбор, необходимо знать их особенности. Существует 3 основных типа.


  1. Электронный термостат. Имеет жидкокристаллический дисплей, что дает возможность получать точную информацию о состоянии .
  2. Сенсорные устройства. Хороши тем, что в них можно задать программу работы, что дает возможность создавать различную температуру в разное время суток.
  3. Механическое изделие. Наиболее простая установка, позволяющая контролировать температуру почвы. При этом температура задается один раз, а потом вы просто корректируете ее. Идеальный вариант для небольших парников.

Как выбрать терморегулятор

Выбирая термостат, следует руководствоваться тем, что вы желаете получить в конечном счете. Прежде всего следует обратить внимание на такие характеристики:

  • особенности установки;
  • способ управления;
  • внешний вид;
  • мощность;
  • наличие или отсутствие дополнительных функций.

При выборе терморегуляторов для теплиц особое внимание стоит уделить мощности. Она должна быть больше, чем требуемая мощность обогрева грунта. Берите с запасом! При этом вся работа контролируется датчиком. Он может быть:

  • внешним;
  • скрытым.

Цепь может состоять из нескольких элементов. Внешний вид терморегуляторов тоже бывает разным. Монтаж может быть или навесным, или скрытым.

Особенности установки

При монтаже системы своими руками стоит знать, что регулятор ведет работу от датчиков - освещенности и температуры. Днем температура в строении будет выше, ночью ниже. В зависимости от этого меняется и отопление. Параметры для терморегулятора такие:

  • предел освещенности - от 500 до 2600 люкс;
  • отклонение в питании прибора - до 20%;
  • диапазон температур - от +15 до 50 градусов;


При установке своими руками системы следует знать, что в терморегулятор входит блок корректировки и блок регулирования температур. Выполнить их можно на транзисторах. Варьировать температуру позволяет переключатель. Реле можно объединить с нагревательным устройством для печки при помощи контактов. На регуляторе может находиться выходное реле, контролирующее обогрев.

В датчики включены фоторезисторы и терморезисторы. Они реагируют на различные изменения в окружающей среде. Установить настройки можно согласно инструкции, представленной изготовителем.

Настроить установку своими руками следует, начав с градуирования шкалы резистора. Сначала датчики опускают в подогретую воду, а затем определяют температуру. Далее ведется градуирование датчика освещения. Собирать регулятор температур разрешается внутри теплиц. Располагают его вблизи нагревательного устройства, в качестве которого может выступать печка.

Обзор терморегулятора (видео)

Как вести работу с терморегулятором

Терморегуляторы, вне зависимости от того, сделаны они своими руками либо приобретены в магазине, очень схожи по принципу действия. Ввиду этого работать с ними легко. Чем характеризуется работа с устройством?

  • Прокручивать меню помогает специальная кнопка.
  • Регулировка температуры происходит вручную.
  • В памяти аппарата можно записывать настройки для быстрого включения.
  • Применение специальных кнопок позволяет вести контроль над работой котла и печки, устанавливать характеристики обогрева.
  • Если есть дисплей с показаниями, можно узнать, каким является обогрев в данныйпериод времени.


Помимо прочего, терморегуляторы дают возможность вести управление котлом для обогрева теплицы.

  1. После того как на контроллер подается питание, датчики опрашиваются на предмет получения информации в реальном времени. Затем контроллер ведет сравнение показаний и уже записанной информации для дня или ночи и подбирает необходимые настройки для терморегулятора.
  2. По прошествии 5 минут происходит активизация терморегулятора, а котел начинает работу.
  3. Если обогрев недостаточный, начинают функционировать нагреватель с насосом. Подается команда об увеличении подачи топлива, что увеличивает обогрев.

Терморегуляторы многофункциональны. С их помощью можно обогреть теплицу и задать требуемую температуру для воздуха в строении, а также обогреть грунт и воду.

Регулятор способен поддерживать оптимальные условия среды в любой . Некоторые устройства включаются и работают самостоятельно, что очень удобно. Подключают их к контроллеру, датчикам тепла, печке и котлу. В итоге вести контроль над температурным режимом можно в полной мере.


Изготовление простого регулятора своими руками

Выполнить регулятор своими руками можно из стандартного бытового термометра. Однако его придется модифицировать.

  • Сначала разберите устройство, но помните, что действовать нужно осторожно.
  • В шкале, в месте расположения области требуемого предела регулирования, выполняется отверстие. Его диаметр должен быть меньше 2,5 миллиметров. Напротив него фиксируется фототранзистор. Берется листовой алюминий, делается уголок, в котором просверливается 2,8-миллиметровое отверстие. Фототранзистор приклеивают на клей «Момент» в гнездо.
  • Ниже отверстия фиксируют уголок, чтобы при превышении температуры (днем) у стрелки не было возможности пройти отверстие. Это предотвратит включение обогрева, когда этого не требуется.
  • С наружной стороны на термометре устанавливают 9-вольтовую лампочку. В корпусе термометра для нее просверливают отверстие. Между шкалой и лампочкой внутри располагают линзу. Она нужна, чтобы устройство срабатывало четко.
  • Провода от лампочки проводятся через отверстие в корпусе, а провода от фототранзистора - через отверстие в шкале. Общий жгут помещают в хлорвиниловую трубку и фиксируют зажимом. Напротив лампочки сверлят 0,4-миллиметровое отверстие.


  • Кроме датчика в терморегуляторе должен быть стабилизатор напряжения. Также требуется фотореле. Питание стабилизатора ведется от трансформатора. В роли фотоэлемента для фотореле служит модифицированный транзистор вида ГТ109. Все, что нужно сделать, это удалить у его корпуса шляпку и обломать базовый вывод.
  • В качестве нагрузки используется механизм, выполненный из реле заводского исполнения. Работа в данном случае идет по принципу электромагнита, где стальной якорь идет внутрь катушки и оказывает влияние на микровыключатель, который зафиксирован при помощи 2 кронштейнов. А микровыключатель приводит в действие электромагнитный пускатель, сквозь контакты которого напряжение питания идет на нагревательный прибор.
  • Фотореле вместе с субблоками питания помещают в корпус, изготовленный из изоляционного материала. К нему крепят термометр на специальной штанге. На лицевой стороне находятся неоновая лампочка (она будет подавать сигнал о начале работы нагревательных элементов) и тумблер.
  • Чтобы регулятор работал точно, следует добиться четкой фокусировки света, исходящего от лампочки на фотоэлемент.

Как сделать термостат своими руками (видео)

Таким образом, несмотря на сложность работ, установка терморегулятора существенно упрощает уход за . Культуры, получающие оптимальный микроклимат, лучше развиваются, а значит, урожай будет значительно больше.

1.
2.
3.
4.

Как известно, для того, чтобы качественно отопить любое помещение, требуется правильно отрегулировать температурные показатели, чтобы нагрев соответствовал оптимально комфортным условиям и обеспечивал благоприятный микроклимат в жилище. Поэтому следует более подробно рассмотреть особенности такого прибора, как регулятор температуры для радиатора отопления, который призван выполнять все эти функции. Кроме того, следует разобраться с тем, как регулировать температуру батареи отопления в различных постройках, включая частные и многоквартирные дома.

Необходимость установки терморегуляторов

Подобные механизмы применяются для следующих целей:
  • экономия производимого отоплением тепла;
  • поддержание комфортного показателя температуры в жилище.
Многие хозяева для решения второй задачи до сих пор пользуются традиционными способами, например, накрывают радиаторы покрывалом или открывают окна для проветривания. Однако гораздо более современным решением будет установка такого прибора, как регулятор температуры отопления, влияющий на расход теплоносителя в отопительной системе и способный функционировать как в ручном, так и в автоматическом режиме.

Очень важно помнить, что при монтаже крайне необходимо наличие специальной перемычки, расположенной непосредственно перед прибором отопления. Если ее не будет, то расход теплоносителя не получится регулировать через радиатор, так как делать это придется через общий стояк.

Говоря об экономии, этот фактор является актуальным для тех хозяев, жилое помещение которых оборудовано автономной отопительной системой, а также для служб жилищно-коммунального хозяйства, использующих приборы учета для оплаты тепла, поступающего от его производителей.

Установка температурных регуляторов в домах многоквартирного типа

Чтобы установить регулятор температуры радиатора батарей отопления в многоквартирном доме, необходимо разобраться с тем, что представляет собой учет тепла в такой конструкции.

Трубопроводы подачи и отдачи оснащены специальными подпорными шайбами, перед и после каждой из которых располагаются регулирующие давление датчики. Благодаря тому, что диаметр этих датчиков известен, появляется возможность рассчитать расход теплоносителя, циркулирующего через датчики. Как результат, разница, полученная между расходом воды в трубопроводах подачи и отдачи, будет отображать объем израсходованной жильцами воды.

Контроль на обоих участках призваны осуществлять температурные датчики. Поэтому, зная то, в каком объеме расходуется тепло и чему равна его температура, можно легко рассчитать то количество тепла, которое осталось в помещении.

Для того чтобы регулировать работу отопления было проще, требуется постоянно следить за состоянием температуры.

Сделать это поможет один из двух способов:
  1. Монтаж запорного клапана . Такое устройство призвано частично перекрывать систему трубопровода в том случае, если температура обратки является выше заданной. Представляет собой обычный электромагнитный клапан. Подобный вариант станет подходящим тех домов, где система отопления является относительно простой и не отличается большим объемом теплоносителя.
  2. Устройство клапана трехходового типа . Этот прибор также позволяет регулировать текущий расход теплоносителя, однако функционирует он несколько иначе: в том случае, если температура воды превышает норму, то она направляется сквозь открытый клапан в трубопровод подачи в большем количестве. Путем смешения с остывшей водой общая температура снизится, а необходимая скорость циркуляции сохранится.
Подобная конструкция может несколько отличаться в разных системах. Схема устройства может быть оснащена несколькими температурными датчиками, а также одним или двумя насосами циркуляции. Кроме того, могут присутствовать клапаны механического типа, с помощью которых можно осуществлять контроль над работой отопления без подачи какого-либо питания.

Монтаж механических регуляторов не несет в себе особой сложности. Чтобы установить такой прибор, требуется лишь соединить его с фланцем в узле элеватора. Немаловажным является и тот факт, что цена таких устройств является значительно более низкой по сравнению с электронными механизмами.

Монтаж регуляторов температуры в частных домах

Как правило, автоматический регулятор температуры отопления является неотъемлемой частью нагревательного котла в автономной системе отопления. Такой датчик может быть мобильным, то есть его можно переносить, а также способен измерять температуру в комнате.
В котлах электрического типа используются электронные датчики, которые непосредственно связаны с установленными ТЭНами (тепловыми электронагревательными элементами) либо с напряжением, возникающим на электродах или на обмотке котла.

Системы котлов, работающие как с помощью газа, так и с применением технологии пиролиза, зачастую оснащены механическими регуляторами, главное из преимуществ которых – независимость в плане энергии. Но такой вариант, безусловно, не подразумевает использования выносных температурных датчиков. Читайте также: " ".

Температурные датчики для радиаторов

Иногда один датчик температуры имеет при себе несколько отопительных радиаторов. Влияет на это, в первую очередь, схема установки. Но гораздо чаще принято монтировать регулятор на каждый прибор отопления по отдельности.

Многие хозяева устанавливают привычную многим систему, именуемую «ленинградкой», принцип работы которой заключается в применении одной опоясывающей дом или один этаж трубы, имеющей довольно внушительный диаметр, а параллельно ей встраиваются батареи отопления или конвекторы.

Стоит отметить, что для того, чтобы отрегулировать температуру отопления, можно использовать не только стандартные устройства.

К распространенным механизмам этого типа относятся:

  • головка на термостатической основе. Представляет собой автоматический датчик, контролирующий температуру теплоносителя в батарее. Принцип ее функционирования заключается в следующем: в процессе нагрева жидкие и газообразные вещества расширяются (детальнее: " "). Это, как следствие, ведет к тому, что нагретый продукт выдавливает специальный шток, перекрывая, тем самым, доступ теплоносителя;
  • не менее часто применяются и приборы, именуемые дросселями. Они представляют собой специальные краны винтового типа, с помощью которых можно регулировать проходимость теплоносителя ручным образом. Стоимость их является более доступной, а кроме того, с их помощью можно контролировать двухтрубные отопительные системы;
  • наименее дорогостоящий и самый простой механизм, помогающий отрегулировать температуру – это традиционный вентиль. Безусловно, эксплуатировать в данном случае следует лишь современные модели, а не устаревшие винтовые приборы, так как в старых механизмах очень часто отрываются клапаны, а также существует риск протечки сальников. Совершенно иная ситуация обстоит с шаровыми вентилями: даже в полуоткрытой позиции они надежно и качественно функционируют на протяжении долгого периода времени.
Для того чтобы устройство регуляторов температуры прошло максимально удобно, многие специалисты рекомендуют предварительно изучить различные фото этих устройств и детальные видео по их правильному подключению.

Пример регуляторов температуры отопления на видео: