Пьезометрические графики. Гидравлический режим тепловой сети

Общие принципы гидравлического расчета трубопроводов систем водяного отопления подробно изложены в разделе Системы водяного отопления . Они же применимы и для расчета теплопроводов тепловых сетей, но с учетом некоторых их особенностей. Так в расчетах теплопроводов принимаются турбулентное движение воды (скорость воды больше 0,5 м/с, пара - больше 20-30 м/с, т.е. квадратичная область расчета), значения эквивалентной шероховатости внутренней поверхности стальных труб больших диаметров, мм, принимают для: паропроводов - k = 0,2; водяной сети - k = 0,5; конденсатопроводов - k = 0,5-1,0.

Расчетные расходы теплоносителя по отдельным участкам теплосети определяются как сумма расходов отдельных абонентов с учетом схемы присоединения подогреватели ГВС. Кроме того, необходимо знать оптимальные удельные падения давления в трубопроводах, которые предварительно определяются технико-экономическим расчетом. Обычно их принимают равными 0,3-0,6 кПа (3-6 кгс/м 2) для магистральных тепловых сетей и до 2 кПа (20 кгс/м 2) - для ответвлений.

При гидравлическом расчете решаются следующие задачи: 1) определение диаметров трубопроводов; 2) определение падения давления-напора; 3) определение действующих напоров в различных точках сети; 4) определение допустимых давлений в трубопроводах при различных режимах работы и состояниях теплосети.

При проведении гидравлических расчетов используются схемы и геодезический профиль теплотрассы, с указанием размещения источников теплоснабжения, потребителей теплоты и расчетных нагрузок. Для ускорения и упрощения расчетов вместо таблиц используются логарифмические номограммы гидравлического расчета (рис. 1), а в последние годы - компьютерные расчетные и графические программы.

Рисунок 1.

ПЬЕЗОМЕТРИЧЕСКИЙ ГРАФИК

При проектировании и в эксплуатационной практике для учета взаимного влияния геодезического профиля района, высоты абонентских систем, действующих напоров в тепловой сети широко пользуются пьезометрическими графиками. По ним нетрудно определить напор (давление) и располагаемое давление в любой точке сети и в абонентской системе для динамического и статического состояния системы. Рассмотрим построение пьезометрического графика, при этом будем считать, что напор и давление, падение давления и потеря напора связаны следующими зависимостями: Н = р/γ, м (Па/м); ∆Н = ∆р/ γ, м (Па/м); и h = R/ γ (Па), где Н и ∆Н - напор и потеря напора, м (Па/м); р и ∆р - давление и падение давления, кгс/м 2 (Па); γ - массовая плотность теплоносителя, кг/м 3 ; h и R - удельная потеря напора (безразмерная величина) и удельное падение давления, кгс/м 2 (Па/м).

При построении пьезометрического графика в динамическом режиме за начало координат принимают ось сетевых насосов; взяв эту точку за условный нуль, строят профиль местности по трассе основной магистрали и по характерным ответвлениям (отметки которых отличаются от отметок основной магистрали). На профиле в масштабе вычерчивают высоты присоединяемых зданий, затем, приняв предварительно напор на всасывающей стороне коллектора сетевых насосов Н вс = 10-15 м, наносится горизонталь А 2 Б 4 (рис. 2, а). От точки А 2 откладывают по оси абсцисс длины расчетных участков теплопроводов (с нарастающим итогом), а по оси ординат из концевых точек расчетных участков - потери напора Σ∆Н на этих участках. Соединив верхние точки этих отрезков, получим ломаную линию А 2 Б 2 , которая и будет пьезометрической линией обратной магистрали. Каждый вертикальный отрезок от условного уровня А 2 Б 4 до пьезометрической линии А 2 Б 2 обозначает собой потери напора в обратной магистрали от соответствующей точки до циркуляционной насосной на ТЭЦ. От точки Б 2 в масштабе откладывается вверх необходимый располагаемый напор для абонента в конце магистрали ∆Н аб, который принимается равным 15-20 м и более. Полученный отрезок Б 1 Б 2 характеризует напор в конце подающей магистрали. От точки Б 1 откладывается вверх потеря напора в подающем трубопроводе ∆Н п и проводится горизонтальная линия Б 3 А 1 .

Рисунок 2. а - построение пьезометрического графика; б - пьезометрический график двухтрубной тепловой сети

От линии А 1 Б 3 вниз откладываются потери напора на участке подающей линии от источника теплоты до конца отдельных расчетных участков, и строится аналогично предыдущему пьезометрическая линия A 1 B 1 подающей магистрали.

При закрытых системах ЦТС и равных диаметрах труб подающей и обратной линий пьезометрическая линия A 1 B 1 является зеркальным отображением линии А 2 Б 2 . От точки А, откладывается вверх потеря напора в бойлерной ТЭЦ или в контуре котельной ∆Н б (10-20 м). Давление в подающем коллекторе будет Н н, в обратном - Н вс, а напор сетевых насосов - Н с.н.

Важно отметить, что при непосредственном присоединении местных систем обратный трубопровод теплосети гидравлически связан с местной системой, при этом давление в обратном трубопроводе целиком передается местной системе и наоборот.

При первоначальном построении пьезометрического графика напор на всасывающем коллекторе сетевых насосов Н вс был принят произвольно. Перемещение пьезометрического графика параллельно самому себе вверх или вниз позволяет принять любые давления на всасывающей стороне сетевых насосов и соответственно в местных системах.

При выборе положения пьезометрического графика необходимо исходить из следующих условий:

1. Давление (напор) в любой точке обратной магистрали не должно быть выше допускаемого рабочего давления в местных системах, для новых систем отопления (с конвекторами) рабочее давление 0,1 МПа (10 м вод. ст.), для систем с чугунными радиаторами 0,5-0,6 МПа (50-60 м вод. ст.).

2. Давление в обратном трубопроводе должно обеспечить залив водой верхних линий и приборов местных систем отопления.

3. Давление в обратной магистрали во избежание образования вакуума не должно быть ниже 0,05-0,1 МПа (5-10 м вод. ст.).

4. Давление на всасывающей стороне сетевого насоса не должно быть ниже 0,05 МПа (5 м вод. ст.).

5. Давление в любой точке подающего трубопровода должно быть выше давления вскипания при максимальной (расчетной) температуре теплоносителя.

6. Располагаемый напор в конечной точке сети должен быть равен или больше расчетной потери напора на абонентском вводе при расчетном пропуске теплоносителя.

7. В летний период давление в подающей и обратной магистралях принимают больше статического давления в системе ГВС.

Статическое состояние системы ЦТ. При остановке сетевых насосов и прекращении циркуляции воды в системе ЦТ она переходит из динамического состояния в статическое. В этом случае давления в подающей и обратной линиях теплосети выровняются, пьезометрические линии сливаются в одну - линию статического давления, и на графике она займет промежуточное положение, определяемое давлением подпиточного устройства источника СЦТ.

Давление подпиточного устройства устанавливается персоналом станции или по наивысшей точке трубопровода местной системы, непосредственно присоединенной к теплосети, или по давлению паров перегретой воды в высшей точке трубопровода. Так, например, при расчетной температуре теплоносителя Т 1 = 150 °С давление в высшей точке трубопровода с перегретой водой установится равным 0,38 МПа (38 м вод. ст.), а при Т 1 = 130 °С - 0,18 МПа (18 м вод. ст.).

Однако во всех случаях статическое давление в низкорасположенных абонентских системах не должно превышать допускаемого рабочего давления 0,5-0,6 МПа (5-6 атм). При его превышении эти системы следует переводить на независимую схему присоединения. Понижение статического давления в тепловых сетях может быть осуществлено путем автоматического отключения от сети высоких зданий.

В аварийных случаях, при полной потере электроснабжения станции (остановка сетевых и подпиточных насосов), произойдет прекращение циркуляции и подпитки, при этом давления в обеих линиях теплосети выровняются по линии статического давления, которое начнет медленно, постепенно понижаться в связи с утечкой сетевой воды через неплотности и охлаждения ее в трубопроводах. В этом случае возможно вскипание перегретой воды в трубопроводах с образованием паровых пробок. Возобновление циркуляции воды в таких случаях может привести к сильным гидравлическим ударам в трубопроводах с возможным повреждением арматуры, нагревательных приборов и др. Во избежание такого явления циркуляцию воды в системе ЦТ следует начать только после восстановления путем подпитки теплосети давления в трубопроводах на уровне не ниже статического.

Для обеспечения надежной работы тепловых сетей и местных систем необходимо ограничить возможные колебания давления в тепловой сети допустимыми пределами. Для поддержания требуемого уровня давлений в тепловой сети и местных системах в одной точке тепловой сети (а при сложных условиях рельефа - в нескольких точках) искусственно сохраняют постоянное давление при всех режимах работы сети и при статике с помощью подпиточного устройства.

Точки, в которых давление поддерживается постоянным, называются нейтральными точками системы. Как правило, закрепление давления осуществляется на обратной линии. В этом случае нейтральная точка располагается в месте пересечения обратного пьезометра с линией статического давления (точка НТ на рис. 2, б), поддержание постоянного давления в нейтральной точке и восполнение утечки теплоносителя осуществляются подпиточными насосами ТЭЦ или РТС, КТС через автоматизированное подпиточное устройство. На линии подпитки устанавливаются автоматы-регуляторы, работающие по принципу регуляторов «после себя» и «до себя» (рис. 3).

Рисунок 3. 1 - сетевой насос; 2 - подпиточный насос; 3 - подогреватель сетевой воды; 4 - клапан регулятора подпитки

Напоры сетевых насосов Н с.н принимаются равными сумме гидравлических потерь напора (при максимальном - расчетном расходе воды): в подающем и обратном трубопроводах тепловой сети, в системе абонента (включая вводы в здание), в бойлерной установке ТЭЦ, пиковых котлах ее или в котельной. На источниках теплоты должно быть не менее двух сетевых и двух подпиточных насосов, из которых - по одному резервному.

Величина подпитки закрытых систем теплоснабжения принимается равной 0,25 % объема воды в трубопроводах тепловых сетей и в абонентских системах, присоединенных к теплосети, ч.

При схемах с непосредственным водоразбором величина подпитки принимается равной сумме расчетного расхода воды на ГВС и величины утечки в размере 0,25 % вместимости системы. Вместимость теплофикационных систем определяется по фактическим диаметрам и длинам трубопроводов или по укрупненным нормативам, м 3 /МВт:

Сложившаяся по признаку собственности разобщенность в организации эксплуатации и управления системами теплоснабжения городов самым отрицательным образом сказывается как на техническом уровне их функционирования, так и на их экономической эффективности. Выше отмечалось, что эксплуатацией каждой конкретной системы теплоснабжения занимается несколько организаций (подчас «дочерних» от основной). Однако специфика систем ЦТ, в первую очередь тепловых сетей, определяется жесткой связью технологических процессов их функционирования, едиными гидравлическими и тепловыми режимами. Гидравлический режим системы теплоснабжения, являющийся определяющим фактором функционирования системы, по своей природе крайне неустойчив, что делает системы теплоснабжения трудноуправляемыми по сравнению с другими городскими инженерными системами (электро-, газо-, водоснабжение).

Ни одно из звеньев систем ЦТ (источник теплоты, магистральные и распределительные сети, тепловые пункты) самостоятельно не может обеспечить требуемые технологические режимы функционирования системы в целом, а, следовательно, и конечный результат - надежное и качественное теплоснабжение потребителей. Идеальной в этом смысле является организационная структура, при которой источники теплоснабжения и тепловые сети находятся в ведении одного предприятия-структуры.

По результатам гидравлического расчета строится пьезометрический график для главной магистрали и ответвления.

По известным горизонталям на генплане на график наносится профиль местности для магистрали и ответвления. На профиле в при­нятом масштабе наносят высоты зданий и линию статического давления на 3–5 м выше высоты зданий. Построение пьезометров подающей и обратной магистралей производится на основании полученных потерь напоров на участках (см. табл. П. 7).

Напор у наиболее удаленного потребителя принимать не менее 200 Па (20 м в. ст.). Потеря напора в подогревателях и пиковых кот­лах ТЭЦ принимается равной 300–400 Па (30–40 м в. ст.). На гра­фике наносятся линия статики и линия "невскипания".

Построенный пьезометрический график должен удовлетворять следующим техническим условиям:

а) давление в местных системах отопления зданий не должно быть более 0,6 МПа (60 м в. ст.).

Если в некоторых зданиях это давление превышает 60 м, то их местные системы присоединяются по независимой схеме;

б) давление на всасе сетевых насосов должно быть не менее 5 м, во избежание кавитации насосов (вскипание горячей воды из-за низ­кого давления);

в) давление в обратной магистрали как в статическом, так и в динамическом (при работе сетевых насосов) режимах не должно быть ниже статической высоты зданий.

Если для некоторых зданий этого достигнуть не удается, то после системы отопления зданий необходимо установить регулятор «подпора»;

г) пьезометрическое давление в обратной магистрали должно быть не менее 5 м для предупреждения подсоса воздуха в систему;

д) давление в любой точке подающей магистрали должно быть выше давления насыщения при данной температуре теплоносителя (условие «невскипания»), т.е. пьезометр подающей магистрали должен располагаться выше линии «невскипания». Например, при температуре воды в сети 150° С подающий пьезометр должен отстоять от уровня земли на расстоянии не менее 38 м;

е) полный напор за сетевыми насосами должен быть ниже давления, допускаемого по условиям прочности трубок сетевых подогревателей типа БО - 140М и ПСВ-230М. При теплоснабжении от водогрейных котельных эта величина может доходить до 250 м.

Пьезометрические графики ответвлений необходимо построить, исходя из условия, чтобы потери напора от источника тепла до ко­нечных потребителей главной магистрали и ответвлений были бы при­мерно равны. Это может потребовать некоторой корректировки полученных ранее диаметров труб ответвлений. Пьезометрический график определяет полный (отсчитанный от одного общего горизонтального уровня) или пьезометрический (отсчитанный от уровня прокладки сети трубопровода) напор, а также располагаемый напор в отдельных точках тепловой сети и абонентских систем.

Рис. 4. Пьезометрический график водяной тепловой сети

Теплофикационное оборудование ТЭЦ.

В проекте необходимо определить теплопроизводительность основных сетевых подогревателей и пиковых водогрейных котлов, необходимую производительность деаэраторов подпиточной воды и емкость баков-аккумуляторов горячей воды (для открытой системы), подобрать сетевые и подпиточные насосы.

При проектировании и эксплуатации разветвленных тепловых сетей, для учета взаимного влияния профиля района, высот присоединяемых зданий, потерь давления в тепловой сети и абонентских установках, используется график. По пьезометрическому графику легко определяется давление и располагаемый перепад давлений в любой точке тепловой сети.

На основании пьезометрического графика выбирается схема присоединения абонентских установок, подбираются повысительные насосы, подпиточные насосы и автоматические устройства.

График давления разрабатывается для состояний покоя системы (гидростатический режим) и динамического режима.

Динамический режим характеризуется линией потерь напора в подающем и обратном трубопроводе, на основании гидравлического расчета сети, и определяется работой сетевых насосов.

Гидростатический режим поддерживается подпиточными насосами в период отключения сетевых насосов.

К водяным тепловым сетям присоединены абоненты, имеющие различные тепловые нагрузки. Они могут быть расположены на различных геодезических отметках и иметь различную высоту. Системы отопления абонентов могут быть рассчитаны на работу с различными температурами воды. В этих случаях необходимо заранее определять давления или напоры в любой точке тепловой сети.

Для этого строится пьезометрический график или график напоров тепловой сети, на котором в определенном масштабе нанесены рельеф местности, высота присоединенных зданий, напор в тепловой сети; по нему легко определить напор (давление) и располагаемый напор (перепад давлений) в любой точке сети и абонентских системах.

Кроме определения напоров в любой точке сети и по пьезометрическому графику можно проверить соответствие предельных давлений в тепловой сети прочности элементов систем теплоснабжения. По графику напоров выбираются схемы присоединения потребителей к тепловой сети и подбирается оборудование тепловых сетей (сетевые и подпиточные насосы, автоматические регуляторы давления и т. п.). График стоится при двух режимах работы тепловых сетей - статическом и динамическом.



Статический режим характеризуется давлениями в сети при неработающих сетевых, но включенных подпиточных насосах. Циркуляция воды в сети отсутствует. При этом подпиточные насосы должны развивать напор, обеспечивающий невскипаемость воды в тепловой сети.

Динамический режим характеризуется давлениями, возникающими в тепловой сети и в системах потребителей теплоты при работающих сетевых насосах, обеспечивающих циркуляцию воды в системе.

Пьезометрический график разрабатывается для основной магистрали теплосети и протяженных ответвлений. Он может быть построен только после выполнения гидравлического расчета трубопроводов - по рассчитанным падениям давления на участках тепловой сети.

График строится по двум осям - вертикальной и горизонтальной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных систем в метрах, на горизонтальной -длины участков тепловой сети.

При построении условно принимают, что ось трубопроводов и геодезические отметки установки насосов и нагревательных приборов в первом этаже зданий совпадают с отметкой земли. Высшее положение воды в отопительных системах совпадает с верхней отметкой здания.

Изм.
Лист
№ докум.
Подпись
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ
2.7 Расчет конструктивных элементов тепловой сети

В результате теплового воздействия теплоносителя на трубопровод возникает тепловое удлинение металла.

Расчет проводиться по «Справочник по теплоснабжению и вентиляции- Р. В. Щекин».

Величина теплового удлинения трубопровода определяется по формуле:

∆l=a–l(t 1 -t 2) (22)

где: a- коэффициент линейного расширения трубных сталей, мм/м

l-длина рассматриваемого участка, м

t 1 -максимальная температура стенки трубы, т.е. принимается равной максимальной температуре теплоносителя, 0 С (t 1 -130;150 0 С)

t 2 -минимальная температура стенки трубы, принимаемой равной расчетной температуре наружного воздуха для отопления (t 2 = t 0).

Для обеспечения правильной работы компенсаторов и самокомпенсации трубопроводы делятся неподвижными опорами на отдельные участки, независимые один от другого в отношении теплового удлинения.

На каждом участке трубопровода, ограниченном сменными неподвижными опорами, предусматривается установка компенсатора и самокомпенсации.

При расстановке на трассе неподвижных опор нужно иметь ввиду следующие:

Неподвижные опоры устанавливаются в первую очередь в местах ответвлений трубопровода;

При расстановке неподвижных опор (НО) на прямых участках исходят из допускаемых расстояний между неподвижными опорами в зависимости от диаметра труб, типа компенсаторов и параметров теплоносителя.

Расчет трубопроводов на компенсацию тепловых удлинений с гибкими компенсаторами(П-образными) и при самокомпенсации производят на допускаемое изгибающие компенсационное напряжение G доп труб ГОСТ 10704-91,которое можно принять:

Для П- образных компенсаторов при Т≤ 150 0 С, G доп =11кг/мм 2

Для расчета участков самокомпенсации при Т≤ 150 0 С, G доп =8 кг/мм 2

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ

Исходные данные для расчета:

Расчетный участок 3-4

Диаметр трубы d у =108–4

Расстояние между неподвижными опорами, м l=70м

Максимальная температура теплоносителя t i = 150 0 С

Расчетная температура воздуха t о =26 0 С

Расчетная схема

Рисунок7. Расчетная схема П- образного компенсатора

Тепловое удлинение определяется по формуле

∆l=a–l(t 1 -t 2)

∆l=1,24–70(150+26)/10 -2 =135,408мм

Для увеличения компенсирующей способности П- образного компенсатора и компенсационных напряжений в трубопроводе следует предусматривать предварительную растяжку в размере 50% теплового удлинения.

Расчетное тепловое удлинение участка:

∆l расч =0,5–∆l (23)

∆l расч =0,5–135,408=67,704мм

Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ
Проверить Г-образный участок на самокомпенсацию для участка трубопровода при следующих данных:

Наружный диаметр, мм D н =108×4

Толщина стенки, мм s=3,5

Угол поворота a,град,=90 0 С

Длина большого плеча, м l б =15,0м

Длина меньшего плеча м l м =10,0м

Максимальная температура теплоносителя 0 С, t 1 =150 0 С

Расчетная температура наружного воздуха t н = t 0 =-26 0 С

Расчетная схема

Рисунок8. Расчетная схема Г- образного компенсатора

Расчетный угол: 95 0 С

Расчетная разность температур

∆t=t 1 -t н =150+26=176 0 С (25)

Определяем значение вспомогательных величин (по номограмме VI14. рис 6 и 7)

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ

7 =0,126 ∆t=176 0 С l=10,0

Сила упругой деформации p x и p y и избегающий компенсационное напряжение G кг/мм 2

p x =A× =6× =13,3

p y =12× =26,61

К и(А) =С (А)

К и(А) =3,5× =1,12кгс/см 2

Определение усилий неподвижных опор

Усилия, воспринимаемые неподвижными опорами складываются из неуравновешенных сил внутреннего давления, сил трения в подвижных

опорах и сил упругой деформации П- образных компенсаторов и самокомпенсации.

При определение усилий неподвижные опоры учитываются схема участка трубопровода, неподвижных опор и компенсирующих устройств расстояние неподвижными опорами и т.д.

Для расчета рассматривать схему участка 3-4 с П- образными компенсаторами.

Осевая сила на неподвижную опору определяется по формуле:

Н О1 =Р К1 +q 1 ×μ×l 1 (28)

Р К1 -сила упругой деформации;

q 1 - вес 1 метра трубы с водой (табл. VI 24) с учетом веса изоляции (принять вес 1 метра изоляции 0,5кг);

μ- коэффициент трения для скользящих опор.

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ
Н О1 =Р К1 +d 1 ×М×l 1 =70+17,5×0,3×30=0,27т.
Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ

Подбор тепловой изоляции

Тепловая изоляция повергается непосредственному воздействию наружных температур, влажности воздуха, давлению. В неблагоприятных условиях находится тепловая изоляция при подземной канальной прокладке и особенно при безканальной.

Назначение тепловой изоляции:

Уменьшение потерь тепла в окружающую среду;

Получение определенной температуры на изолируемой поверхности;

Предохранение от внешней коррозии.

Тепловая изоляция применяется при всех видах прокладки тепловых сетей независимо от способа прокладки и температуры теплоносителя.

Подбор толщины тепловой изоляции и конструкцию слоев выполнить по приложению 8,9,10,11.

Данные подбора оформляется в таблицу 5.

Таблица 5- Подбор тепловой изоляции

Расчетная температура 0 С Условный диаметр Толщина изоляции трубопровода Способ прокладки Конструкция изоляции
Т 1 Т 2 Т 3 Антикор.покр. Осн.теплоизол.слой Покровный слой
Т 1 , Т 2 Подземный в непроходных каналах, тоннелях и надземный Изол в два слоя по холодной изольной мастике марки МРБ – Х-Т15 ГОСТ 10296-79ТУ21-27-37-74 МПСМ Плотно холосто-прошивное из отходов стеклянного волокна Стеклотекстолит конструкционный КАСТ-В стеклотекстолит покровный листовой СТПЛ
150-70 45×3,5
76×3,5
89×3,5
108×4 Маты из стеклянного штапельного волокна в рулонах
133×4
Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ
Заключение

В результате выполнения курсового проекта по теплоснабжению жилого квартала были приняты следующие технические решения:

1.Система тепловых сетей централизованная водяная закрытая как наиболее приемлемая и экономически- выгодная для теплоснабжения жилого квартала;

2. Применение новых технологий в теплоизоляции обеспечивает выгодное качество работ по энергосбережению;

3.В ЦТП установлены:

Пластинчатые теплообменники, имеющие массу преимуществ:

небольшие габариты и высокий коэффициент теплоотдачи;

Контрольно-измерительные приборы и автоматика;

4. Параметры теплоносителя повышенные, что позволит сократить расход сетевой воды, металлоемкость системы и расход газа и электричества;

5.Гидравлическим расчетом определяется диаметр трубопроводов, потери давления в сети.


Литература

Изм.
Лист
№ докум.
Подпись
Дата
Лист
ВГЭТК.401-Т.08.КП.46д.ПЗ

1. Апарцев, М.М. Наладка водяных систем центрального тепло­снабжения. - М.: Энергия, 1982.

2. Ионин А.А. Теплоснабжение: учебник для вузов / М., Стройиздат. 1982

3. Варфоломеева, Л. Е. Методические указания по курсовому проектированию. Теплоснабжение. – В.: ВГЭТК, 2005.

4. Манюк, В.И. Справочник. Наладка и эксплуатация водяных тепловых сетей. - М.: Стройиздат, 1988.

При проектировании и эксплуатации разветвленных тепловых сетей, для учета взаимного влияния профиля района, высот присоединяемых зданий, потерь давления в тепловой сети и абонентских установках, используется график. По пьезометрическому графику легко определяется давление и располагаемый перепад давлений в любой точке тепловой сети.

На основании пьезометрического графика выбирается схема присоединения абонентских установок, подбираются повысительные насосы, подпиточные насосы и автоматические устройства.

График давления разрабатывается для состояний покоя системы (гидростатический режим) и динамического режима.

Динамический режим характеризуется линией потерь напора в подающем и обратном трубопроводе, на основании гидравлического расчета сети, и определяется работой сетевых насосов.

Гидростатический режим поддерживается подпиточными насосами в период отключения сетевых насосов.

К водяным тепловым сетям присоединены абоненты, имеющие различные тепловые нагрузки. Они могут быть расположены на различных геодезических отметках и иметь различную высоту. Системы отопления абонентов могут быть рассчитаны на работу с различными температурами воды. В этих случаях необходимо заранее определять давления или напоры в любой точке тепловой сети.

Для этого строится пьезометрический график или график напоров тепловой сети, на котором в определенном масштабе нанесены рельеф местности, высота присоединенных зданий, напор в тепловой сети; по нему легко определить напор (давление) и располагаемый напор (перепад давлений) в любой точке сети и абонентских системах.

Кроме определения напоров в любой точке сети и по пьезометрическому графику можно проверить соответствие предельных давлений в тепловой сети

Изм.
Лист.
№ докум.
Подпись
Дата
Лист.
ВГЭТК.401Т.14.КП.46д.ПЗ
прочности элементов систем теплоснабжения. По графику напоров выбираются схемы присоединения потребителей к тепловой сети и подбирается оборудование тепловых сетей (сетевые и подпиточные насосы, автоматические регуляторы давления и т. п.). График стоится при двух режимах работы тепловых сетей - статическом и динамическом.

Статический режим характеризуется давлениями в сети при неработающих сетевых, но включенных подпиточных насосах. Циркуляция воды в сети отсутствует. При этом подпиточные насосы должны развивать напор, обеспечивающий невскипаемость воды в тепловой сети.

Динамический режим характеризуется давлениями, возникающими в тепловой сети и в системах потребителей теплоты при работающих сетевых насосах, обеспечивающих циркуляцию воды в системе.

Пьезометрический график разрабатывается для основной магистрали теплосети и протяженных ответвлений. Он может быть построен только после выполнения гидравлического расчета трубопроводов - по рассчитанным падениям давления на участках тепловой сети.

График строится по двум осям - вертикальной и горизонтальной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных систем в метрах, на горизонтальной -длины участков тепловой сети.

При построении условно принимают, что ось трубопроводов и геодезические отметки установки насосов и нагревательных приборов в первом этаже зданий совпадают с отметкой земли. Высшее положение воды в отопительных системах совпадает с верхней отметкой здания.

Полный напор в нагнетательном патрубке сетевого насоса соответствует

Изм.
Лист.
№ докум.
Подпись
Дата
Лист.
ВГЭТК.401Т.14.КП.46д.ПЗ
отрезку Н н. Полный напор на обратном коллекторе источника теплоснабжения соответствует отрезку Н o .

Напор, развиваемый сетевым насосом, соответствует вертикальному отрезку Н С =Н H -Н 0 , потери напора в теплоподготовительной установке источника теплоснабжения (в сетевых подогревателях или водогрейных котлах) соответствуют вертикальному отрезку Н Т. Таким образом, напор на подающем коллекторе источника теплоснабжения соответствует вертикальному отрезку Н ит =Н с - .

Методика построения графика:

1) Строится магистраль, условно ее отметка совпадает с отметкой земли;

2) На профиле трассы в принятом масштабе вычерчиваются высоты присоединения зданий;

3) Строится линия статического напора, из условий заполнения водой отопительных установок и создания в их верхних точках избыточного давления (запас напора 5 м выше самого высокого здания);

4) Пьезометрическое давление в обратном трубопроводе тепловой сети не должно быть меньше 5 м в. ст. во избежание образования вакуума и подсоса воздуха.

График выполняется на миллиметровке формата 297 х 420. Для построения применять следующие масштабы:

Горизонтальный – 1:1000, 1:500; вертикальный – 1см – 5м.

Определить располагаемый напор для каждой УТ (тепловой камеры):

Нрасп. = Нподающ.тр. – Нобратн.тр.


Подбор тепловой изоляции

Тепловая изоляция подвергается непосредственному воздействию наружных температур, влажности воздуха, давлению. В неблагоприятных условиях находится тепловая изоляция при подземной канальной прокладке и особенно при безканальной.

Назначение тепловой изоляции

Уменьшение потерь тепла в окружающую среду;

Получение определенной температуры на изолируемой поверхности;

Предохранение от внешней коррозии;

Тепловая изоляция применяется при всех видах прокладки тепловых сетей независимо от способа прокладки и температуры теплоносителя.

Таблица 4 – Подбор тепловой изоляции


Коэффициент линейного расширения трубных сталей, мм/м;

Длина рассматриваемого участка, м;

Максимальная температура стенки трубы, т.е. принимается равной максимальной температуры теплоносителя, ºС ()

Максимальная температура стенки трубы, принимаемой равной расчётной температуры наружного воздуха для отопления (t 2 = t 0)

Для обеспечения правильной работы компенсаторов и самокомпенсации трубопроводы делятся неподвижными опорами на отдельные участки, независимые один от другого в отоплении теплового удлинения.

На каждом участке трубопровода, ограниченном сменными неподвижными опорами, предусматривается установка компенсатора или самокомпенсации.

При расстановке по трассе неподвижных опор нужно иметь ввиду следующие:

Неподвижные опоры устанавливаются в первую очередь в местах ответвлений трубопроводы;

При расстановке неподвижных опор (НО) на прямых участках исходят из допустимых расстояний между неподвижными опорами в зависимости от диаметра труб, типа компенсаторов и параметров теплоносителя.

Расчёт трубопроводов на компенсацию тепловых удлинений с гибкими

параметрами (П – образными) и при самокомпенсации производят на допускаемое изгибающее компенсационное напряжение труб ГОСТ 1074 – 01, которое можно принять:

Для П – образных компенсаторов, при Т ≤ 150 ºС, G доп – 11 кг/мм 2

Для расчёта участков самокомпенсации при Т ≤ 150 ºС, G доп – 8 кг/мм 2

Расчётный участок

Диаметр труб d у = 133*4

Расстояние между неподвижными опорами, м

Максимальная температура теплоносителя t = 130 ºC

Расчётная температура воздуха t 0 = - 34 ºC

Расчётная схема


Тепловое удлинение определяется по формуле:

(20)

м

ºC t 0 = - 34 ºC

Для увеличения компенсирующей способности П – образного компенсатора и компенсационных напряжений в трубопроводе следует предусматривать предварительную растяжку в размере 50% теплового удлинения.

223,696 = 111,848 мм

При спинке компенсатора равной половине высоты компенсатора т.е.

В – спинка компенсатора, м;

Н – вылет компенсатора, м

И величина (по монограмме на листах VI.9 VI.12) находим вылет компенсатора Н и силу упругой деформации.

К водяным тепловым сетям присоединены отопительные системы зданий различного назначения, калориферные установки вентиляционных систем, системы горячего водоснабжения. Здания могут быть расположены в различных точках рельефа местности, отличающихся геодезическими отметками, и иметь различную высоту. Системы отопления зданий могут быть рассчитаны на работу с различными температурами воды. В этих случаях важно заранее определять давление и напор в любой точке сети.

График напоров (пьезометрический график) строится для определений давления в любой точке сети и систем потребителей теплоты с целью проверки соответствия предельных давлений прочности элементов систем теплоснабжения. По графику напоров выбираются схемы присоединений потребителей к тепловой сети, и подбирается оборудование тепловых сетей. График строится при двух режимах работы системы теплоснабжения - статическом и динамическом. Статический режим характеризуется давлением в сети при неработающих сетевых, но включенных подпиточных насосах. Динамический режим характеризует давления, возникающие в сети и в системах теплопотребителей при работающей системе теплоснабжения, работающих сетевых насосах, при движении теплоносителя.

Графики разрабатываются для основной магистрали тепловой сети и протяженных ответвлений.

Пьезометрический график (график напоров) может быть построен только после выполнения гидравлического расчета трубопроводов - по рассчитанным падениям давления на участках сети.

График строях по двум осям - вертикальной и горизонтальной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных систем в метрах. Пример построения графика показан на рис.6 приложения 9. По горизонтальной оси нанесены длины отдельных участков сети, показано взаимное расположение по горизонтали характерных потребителей теплоты.

За нулевую отметку нужно принимать место установки сетевых насосов. Предварительно, напор на всасывающей стороне сетевых насосов Н ВС принимают равным 10-15 м.

По известным горизонталям на генплане на график нанести профиль местности для магистрали и ответвлений. Показать высоты зданий и линию статического давления; показать напоры сетевого и подпиточного насосов. Напоры наиболее удаленного потребителя принимать не менее 20-25 м вод.ст. Потеря напора в источнике тепла принимается равной 20-25 м вод.ст.

Построенный пьезометрический график должен удовлетворять следующим техническим условиям:

а) давление в местных системах отопления зданий должно быть не более 60 м вод.ст. Если в нескольких зданиях это давление получается более 60 м, то их местные системы присоединяются по независимой схеме;


б) пьезометрическое давление в обратной магистрали должно быть не менее 5 м для предупреждения подсоса воздуха в систему;

в) давление на во всасывающей линии сетевых насосов должно быть не менее 5 м;

г) давление в обратной магистрали как в статическом, так и в динамическом (при работе сетевых насосов) режимах не должно быть ниже статической высоты зданий.

Если для некоторых зданий этого достигнуть не удается, то после системы отопления зданий необходимо установить регулятор «подпора»;

д) пьезометрическое давление в любой точке подающей магистрали должно быть выше давления насыщения при данной температуре теплоносителя (условие «невскипания»). Например, при температуре воды в сети 100°С падающий пьезометр должен отстоять от уровня земли на расстоянии более 38 м;

е) полный напор за сетевыми насосами, отсчитываемый на пьезометре от нулевой отметки, должен быть ниже давления, допускаемого по условиям прочности сетевых подогревателей (140-150 м).

При теплоснабжении от водогрейных котлов эта величина может доходить до 250 м.

Выбор схем присоединения систем отопления к тепловой сети производят, исходя из графика.

При зависимых схемах систем отопления с элеваторным смешением необходимо, что бы пьезометрический напор в обратной магистрали при динамическом и статическом режимах не превышал 60 м, а располагаемый на вводе в здание был не менее 15 м (в расчетах принимать 20-25м) для поддержания требуемого коэффициента смещения элеватора.

Если при данных условиях располагаемый напор на вводе в здание менее 15 м, в качестве смесительного устройства используют центробежный насос, установленный на перемычке.

Для систем отопления, у которых напор в обратной магистрали ввода теплосети и динамическом режиме превышает допустимые значения, требуется установка насоса на обратной линии ввода.

Если гидродинамический пьезометрический напор в обратной магистрали меньше требуемого по условию заполнения отопительной установки сетевой водой, то есть меньше высоты отопительной установки, то на обратной линии абонентского ввода устанавливают регулятор давления «до себя» (РДДС).

При присоединении систем отопления по независимой схеме напор в обратной магистрали ввода теплосети гидродинамическом и статическом режимах не должен превышать допустимого значения(100м) из условия механической прочности водоподогревателей.

Результаты по выбору схем присоединения систем отопления потребителей к тепловой сети сводим в таблицу7.1 аналогично приведенным примерам.

Таблица 7.1 – Выбор схем присоединения систем отопления