Прокладка теплотрассы в каналах. Компенсация температурных удлинений

Основными типами тепловой изоляции трубопроводов теплосетей в настоящее время являются:

■ изоляция из прошивных минераловатных матов;

■ изоляция из базальтового волокна;

■ изоляция из армопенобетона (АПБ);

■ пенополимербетонная (ППБ) изоляция;

■ пенополиуретановая (ППУ) изоляция;

■ пенополимерминеральная (ППМ) изоляция;

■ изоляция из пенополиэтилена.

Два первых типа изоляции применяются для наземной и канальной прокладки, а изоляция из АПБ, из пенополиэтилена, ППБ, ППУ и ППМ изоляция - для бесканальной прокладки. При этом применение изоляции из базальтового волокна и минеральной ваты невозможно на бесканально проложенных трубопроводах, а остальные типы изоляции, несмотря на то, что в основном используются при бесканальной прокладке, могут применяться при любых видах прокладки.

В настоящее время бесканальная прокладка трубопроводов, безусловно, широко востребована, но если рассматривать весь спектр рынка изоляционных конструкций, то стоит обратить внимание на изоляционные конструкции максимальной заводской готовности. В ряду таких особого внимания заслуживает изоляция конструкции типа СТУ. Конструкция этой навесной изоляции позволяет в разы сократить сроки производства работ на наземной и канальной прокладке и имеет следующие преимущества над аналогами:

■ сохранение своих геометрических характеристик в процессе монтажа и эксплуатации (отсутствие «сминания» при устройстве покровного слоя и провисания при эксплуатации);

■ снижение веса 1 п м трубопровода в изоляции;

■ повышенная гидроизоляция за счет использования гидрофобного покровного слоя;

■ возможность многократного применения, что особенно актуально на байпасах теплосети;

■ доступность трубопровода для визуального контроля и ведения ремонтных работ;

■ наличие элементной базы для изоляции компенсаторов и арматуры.

В соответствии со СНиП 41-03-2003* , основные технические характеристики различных теплоизоляционных изделий для трубопроводов теплосетей приведены в табл. 1.

Таблица 1. Основные технические характеристики различных теплоизоляционных изделий для трубопроводов тепловых сетей .

Разделяя принципы выбора технологий при строительстве теплосетей на технические и экономические, можно выделить следующие подходы.

1. Технические:

■ удобство строительства и эксплуатации;

■ унификация с существующими технологиями прокладки сетей;

■ наличие квалифицированного персонала для эксплуатации;

■ наличие технической базы для ведения текущего ремонта;

■ повышение надежности.

2. Экономические:

■ капитальные затраты в строительство и материалы;

■ снижение эксплуатационных затрат;

■ снижение потерь;

■ наличие производственной базы в транспортной доступности от объекта строительства.

В табл. 2 приведены усредненные показатели стоимости строительства 1 км тепловой сети (с учетом стоимости проектно-изыскательских работ, материалов, устройства объездных дорог и освоения территории).

Таблица 2. Стоимость строительно-монтажных работ на прокладку 1 км тепловых сетей, включая монтаж, временные дороги, освоение территории (по укрупненным показателям на ноябрь 2010 г., без учета НДС)*.

При анализе факторов, влияющих на выбор применяемых технологий, зачастую оказывается, что отсутствие финансирования, производственных баз и опыта эксплуатации, приводит к применению «традиционных» методов ремонта и строительства тепловых сетей с использованием низкоэффективных технологий и методов проведения работ.

В настоящее время в рамках Федерального закона от 23.11.2009 г № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности.» и Федерального закона от 27.07.2010 г № 190-ФЗ «О теплоснабжении» большинство


крупных российских теплоснабжающих компаний уже разработали (или разрабатывают) инвестиционные программы по внедрению инновационных технологий в теплоснабжении для повышения его надежности и энергоэффективности. Но эти программы в большинстве своем не охватывают муниципальные предприятия и службы ЖКХ, не принадлежащие частным компаниям и компаниям с государственным участием. Муниципальные предприятия, несмотря на обязательства к ним по тем же указанным выше федеральным законам (№ 261-ФЗ и № 190-ФЗ), ограничены в своей работе Федеральным законом от 21.07.2005 г № 94- ФЗ «О размещении заказов...», по которому основным критерием выбора технологий, поставщика или подрядчика является цена, а не квалификация участника и качество продукции.

При таком положении дел создание системы качества, основанной на применении энергоэффективных технологий, качественном строительстве, проектировании и производстве материалов, становится практически невозможным.

Сегодняшнее состояние нормативно-технической базы тоже является переходным, т.к. в рамках Федерального закона от 27.12.2002 г. № 184-ФЗ «О техническом регулировании» до сегодняшнего дня идет перестройка норм и правил во всех отраслях, включая теплоснабжение: актуализируются нормы и правила, регламентирующие проектирование, строительство и требования к материалам, которые применяются в строительстве тепловых сетей. В ближайшее время в рамках гармонизации европейских стандартов (EN) и российских национальных стандартов к материалам, используемым при прокладке тепловых сетей, будут установлены более жесткие требования в части энергосбережения и надежности, что приведет к массовому изменению технологии производства, замене используемых материалов и изменению технологий производства работ при строительстве и проектировании тепловых сетей.

Оценивая в целом качество тепловых сетей и темпы их замены и ремонта, отметим, что износ тепловых сетей в России достигает 70%, а по некоторым регионам доходит до 100%. Для поддержания требуемого уровня надежности необходима перекладка до 7% (около 17000 км) протяженности всех тепловых сетей в РФ. Однако на сегодняшний момент перекладывается не более 5000 км в год, при этом 20-25% этих перекладок приходится на города «миллионники». Так, в Москве перекладывается ежегодно около 300 км тепловых сетей, в Санкт-Петербурге - 200 км. Объем использования энергоэффективных материалов при перекладках трубопроводов тепловых сетей еще ниже: в Москве, например, применение предизолированных стальных трубопроводов и пластиковых труб для ГВС с низким коэффициентом теплопроводности составляет 90% всего объема перекладок, а в Томске из максимальных 3 км (при суммарной протяженности 133 км) перекладки в год приходится только 1,5 км на инновационные технологии.

Внедряемые энергоэффективные технологии - это, в первую очередь, стальные предизолированные трубопроводы и трубопроводы из пластика для распределительных тепловых сетей и сетей ГВС. На сегодняшний день применение сшитого полиэтилена и нержавеющей гофрированной трубы в ППУ изоляции в наружных тепловых сетях зарекомендовало себя с положительной стороны. Конечно, требуется увеличение объемов производства и постоянное совершенствование технологий и конструкций, но в условиях плотной городской застройки, необходимости снижения капитальных затрат на производство строительно-монтажных работ и увеличения срока службы трубопроводов, перспективы применения таких трубопроводов видятся очень привлекательными для дальнейшего широкого внедрения.

Следует отметить, что суммарная мощность производителей одного из самых востребованных продуктов на рынке теплоснабжения, а именно труб в ППУ изоляции, составляет порядка 10 тыс. км в год, но используется эта мощность не более чем на 60%. А объем производства крупнейшего на российском рынке производителя (доля рынка которого составляет 80%) трубопроводов из сшитого полиэтилена для тепловых сетей на период с 2004 по 2010 гг. составил всего 3000 км.

Учитывая изложенное, можно сделать следующий вывод: наличие административных барьеров при создании качественных тепловых сетей, отсутствие инвестиционных программ и программ повышения надежности и эффективности приводят к дополнительным расходам теплоснабжающих и муниципальных предприятий, связанных с повреждениями, потерями и расходами на текущие ремонты, что в итоге сказывается на увеличении тарифа на тепловую энергию без повышения качества теплоснабжения.

При этом на законодательном уровне сегодня созданы все условия для обеспечения надежного и энергоэффективного теплоснабжения, повышения качества проектных и строительномонтажных работ, без создания дефицита бюджета с привлечением кредитных средств и прозрачными способами возврата инвестиций.

Литература

1. Шойхет Б.М. Тепловая изоляция трубопроводов тепловых сетей надземной и подземной канальной прокладки с применением материалов «Isotec» // Материалы конференции «Тепловые сети. Современные решения» (1719 мая 2005 г. НП «Российское теплоснабжение»).

Канальная прокладка удовлетворяет большинству требований, однако стоимость ее в зависимости от диаметра выше на 10-50% бесканальной. Каналы предохраняют трубопроводы от воздействия грунтовых, атмосфер­ных и паводковых вод. Трубопроводы в них укладывают на подвижные и неподвижные опоры, при этом обеспечивается организованное тепловое удлинение.

Технологические размеры канала принимают исходя из минимального расстояния в свету между трубами и элементами конструкции, которое в зависимости от диаметра труб 25-1400 мм соответственно принимают рав­ным: до стенки 70-120 мм; до перекрытия 50-100 мм; до поверхности изо­ляции соседнего трубопровода 100-250 мм. Глубину заложения канала


принимают исходя из минимального объема земляных работ и равномерно­го распределения сосредоточенных нагрузок от автотранспорта на пере­крытие. В большинстве случаев толщина слоя грунта над перекрытием со­ставляет 0,8-1,2 м, но не менее 0,5 м.

При централизованном теплоснабжении для прокладки тепловых сетей применяют непроходные, полупроходные или проходные каналы. Если глубина заложения превышает 3 м, то для возможности замены труб со­оружают полупроходные или проходные каналы.

Непроходные каналы применяют для прокладки трубопроводов диа­метром до 700 мм независимо от числа труб. Конструкция канала зависит от влажности грунта. В сухих грунтах чаще устраивают блочные каналы с бетонными или кирпичными стенками либо железобетонные одно- и мно­гоячейковые. В слабых грунтах вначале выполняют бетонное основание, на которое устанавливают железобетонную плиту. При высоком уровне грун­товых вод для их отвода в основании канала прокладывают дренажный трубопровод. Тепловую сеть в непроходных каналах по возможности раз­мещают вдоль газонов.

В настоящее время устраивают преимущественно каналы из сборных железобетонных лотковых элементов (независимо от диаметра проклады­ваемых трубопроводов) типов КЛ, КЛс, или стеновых панелей типов КС и др. Каналы перекрывают плоскими железобетонными плитами. Основания каналов всех типов выполняют из бетонных плит, тощего бетона или пес­чаной подготовки.

При необходимости замены труб, вышедших из строя, или при ремонте тепловой сети в непроходных каналах приходится разрывать грунт и разби­рать канал. В некоторых случаях это сопровождается вскрытием мостового или асфальтного покрытия.

Полупроходные каналы. В сложных условиях пересечения трубопрово­дами тепловой сети существующих подземных коммуникаций, под проез­жей частью, при высоком уровне стояния грунтовых вод вместо непроход­ных устраивают полупроходные каналы. Их применяют также при про­кладке небольшого числа труб в тех местах, где по условиям эксплуатации вскрытие проезжей части исключено, а также при прокладке трубопроводов больших диаметров (800-1400 мм). Высоту полупроходного канала прини­мают не менее 1400 мм. Каналы выполняют из сборных железобетонных элементов - плиты днища, стенового блока и плиты перекрытия.

Проходные каналы. Иначе их называют коллекторами; они сооружают­ся при наличии большого числа трубопроводов. Их располагают под мосто­выми крупных магистралей, на территории больших промышленных пред­приятий, на участках, прилегающих к зданиям теплоэлектроцентралей. Со­вместно с теплопроводами в этих каналах размещают и другие подземные коммуникации: электро- и телефонные кабели, водопровод, газопровод низкого давления и т. п. Для осмотра и ремонта в коллекторах обеспечива­ется свободный доступ обслуживающего персонала к трубопроводам и оборудованию.


Коллекторы выполняются из железобетонных ребристых плит, звеньев рамной конструкции, крупных блоков и объемных элементов. Они обору­дуются освещением и естественной приточно-вытяжной вентиляцией с трехкратным воздухообменом, обеспечивающим температуру воздуха не более 30°С, и устройством для удаления воды. Входы в коллекторы преду­сматриваются через каждые 100-300 м. Для установки компенсирующих и запорных устройств на тепловой сети должны быть выполнены специаль­ные ниши и дополнительные лазы.

Бесканальная прокладка. Для защиты трубопроводов от механических воздействий при этом способе прокладки устраивают усиленную тепловую изоляцию - оболочку. Достоинствами бесканальной прокладки теплопро­водов являются сравнительно небольшая стоимость строительно-монтажных работ, небольшой объем земляных работ и сокращение сроков строительства. К ее недостаткам относится повышенная подверженность стальных труб наружной почвенной, химической и электрохимической коррозии.

При таком виде прокладки подвижные опоры не используют; трубы с тепловой изоляцией укладывают непосредственно на песчаную подушку, отсыпанную на предварительно выровненное дно траншеи. Неподвижные опоры при бесканальной прокладке труб, так же, как и при канальной, представляют собой железобетонные щитовые стенки, установленные пер­пендикулярно теплопроводам. Эти опоры при небольших диаметрах тепло­проводов, как правило, применяют вне камер или в камерах с большим диаметром при больших осевых усилиях. Для компенсации тепловых удли­нений труб применяют гнутые или сальниковые компенсаторы, располо­женные в специальных нишах или камерах. На поворотах трассы во избе­жание зажатия труб в грунте и для обеспечения возможного их перемеще­ния сооружают непроходные каналы.

При бесканальной прокладке применяют засыпные, сборные и моно­литные типы изоляции. Широкое распространение получила монолитная оболочка из автоклавного армированного пенобетона.

Надземная прокладка. Этот тип прокладки является наиболее удобным в эксплуатации и ремонте и характеризуется минимальными тепловыми потерями и простотой обнаружения мест аварий. Несущими конструкциями для труб являются отдельно стоящие опоры или мачты, обеспечивающие расположение труб на нужном расстоянии от земли. При низких опорах расстояние в свету (между поверхностью изоляции и землей) при ширине группы труб до 1,5 м принимается 0,35 м и не менее 0,5 м при большей ши­рине. Опоры выполняют обычно из железобетонных блоков, мачты и эста­кады - из стали и железобетона. Расстояние между опорами или мачтами при надземной прокладке труб диаметром 25-800 мм принимают равным 2-20 м. Иногда устраивают по одной или две промежуточные подвесные опоры с помощью растяжек, чтобы сократить число мачт и снизить капи­тальные вложения в тепловую сеть.

Для обслуживания арматуры и другого оборудования, установленного на трубопроводах тепловой сети, устраивают специальные площадки с ог­раждениями и лестницами: стационарные при высоте 2,5 м и более и пере­движные - при меньшей высоте. В местах установки магистральных задви­жек, спускных, дренажных и воздушных устройств предусматривают утеп­ленные ящики, а также приспособления для подъема людей и арматуры.

5.2. Дренаж тепловых сетей

При подземной прокладке теплопроводов во избежание проникновения воды к тепловой изоляции предусматривают искусственное понижение уровня грунтовых вод. Для этой цели совместно с теплопроводами прокла­дывают дренажные трубопроводы ниже основания канала на 200 мм. Дре­нажное устройство состоит из дренажной трубы и фильтрационного мате­риала обсыпки из песка и гравия. В зависимости от условий работы приме­няют различные дренажные трубы: для безнапорных дренажей - раструб­ные керамические, бетонные и асбестоцементные, для напорных - стальные и чугунные диаметром не менее 150 мм.

На поворотах и при перепадах заложений труб устраивают смотровые колодцы по типу канализационных. На прямолинейных участках такие ко­лодцы предусматривают не менее чем через 50 м. Если отвод дренажной воды в водоемы, овраги или в канализацию самотеком невозможен, строят насосные станции, которые размещают вблизи колодцев на глубине, зави­сящей от отметки дренажных труб. Насосные станции строят, как правило, из железобетонных колец диаметром 3 м. Станция имеет два отсека - ма­шинный зал и резервуар для приема дренажной воды.

5.3. Сооружения на тепловых сетях

Теплофикационные камеры предназначены для обслуживания обору­дования, установленного на тепловых сетях при подземной прокладке. Раз­меры камеры определяются диаметром трубопроводов тепловой сети и га­баритами оборудования. В камерах устанавливают запорную арматуру, сальниковые и дренажные устройства и др. Ширину проходов принимают не менее 600 мм, а высоту - не менее 2 м.

Теплофикационные камеры - сложные и дорогостоящие подземные сооружения, поэтому их предусматривают только в местах установки за­порной арматуры и сальниковых компенсаторов. Минимальное расстояние от поверхности земли до верха перекрытия камеры принимают равным 300 мм.

В настоящее время широко применяются теплофикационные камеры из сборного железобетона. В некоторых местах камеры выполняют из кир­пича или монолитного железобетона.


На теплопроводах диаметром 500 мм и выше применяют задвижки с электроприводом, имеющие высокий шпиндель, поэтому над заглубленной частью камеры сооружают надземный павильон высотой около 3 м.

Опоры. Для обеспечения организованного совместного перемещения трубы и изоляции при тепловых удлинениях применяют подвижные и не­подвижные опоры.

Неподвижные опоры, предназначенные для закрепления трубопрово­дов тепловых сетей в характерных точках, используют при всех способах прокладки. Характерными точками на трассе тепловой сети принято счи­тать места ответвлений, места установки задвижек, сальниковых компенса­торов, грязевиков и места установки неподвижных опор. Наибольшее рас­пространение получили щитовые опоры, которые применяют как при бес­канальной прокладке, так и при прокладке трубопроводов тепловых сетей в непроходных каналах.

Расстояния между неподвижными опорами определяют обычно расче­том труб на прочность у неподвижной опоры и в зависимости от величины компенсирующей способности принятых компенсаторов.

Подвижные опоры устанавливают при канальной и бесканальной про­кладке трубопроводов тепловой сети. Существуют следующие типы раз­личных конструкций подвижных опор: скользящие, катковые и подвесные. Скользящие опоры применяют при всех способах прокладки, кроме беска­нальной. Катковые используют при надземной прокладке по стенам зданий, а также в коллекторах, на кронштейнах. Подвесные опоры устанавливают при надземной прокладке. В местах возможных вертикальных перемеще­ний трубопровода используют пружинные опоры.

Расстояние между подвижными опорами принимают исходя из проги­ба трубопроводов, который зависит от диаметра и толщины стенки труб: чем меньше диаметр трубы, тем меньше расстояние между опорами. При прокладке в каналах трубопроводов диаметром 25-900 мм расстояние меж­ду подвижными опорами принимается соответственно 1,7-15 м. При над­земной прокладке, где допускается несколько больший прогиб труб, рас­стояние между опорами для тех же диаметров труб увеличивают до 2-20 м.

Компенсаторы применяют для снятия температурных напряжений, возникающих в трубопроводах при удлинении. Они могут быть гибкими П-образными или омега-образными, шарнирными или сальниковыми (осевы­ми). Кроме того, используют имеющиеся на трассе повороты трубопрово­дов под углом 90-120°, которые работают как компенсаторы (самокомпен­сация). Установка компенсаторов сопряжена с дополнительными капиталь­ными и эксплуатационными затратами. Минимальные затраты получаются при наличии участков самокомпенсации и применении гибких компенсато­ров. При разработке проектов тепловых сетей принимают минимальное число осевых компенсаторов, максимально используя естественную ком­пенсацию теплопроводов. Выбор типа компенсатора определяется конкрет­ными условиями прокладки трубопроводов тепловых сетей, их диаметром и параметрами теплоносителя.

Противокоррозионное покрытие трубопроводов. Для защиты тепло­проводов от наружной коррозии, вызываемой электрохимическими и хими­ческими процессами под воздействием окружающей среды, применяют противокоррозионные покрытия. Высоким качеством обладают покрытия, выполненные в заводских условиях. Тип противокоррозионного покрытия зависит от температуры теплоносителя: битумная грунтовка, несколько слоев изола по изольной мастике, оберточная бумага или шпатлевка и эпок­сидная эмаль.

Тепловая изоляция. Для тепловой изоляции трубопроводов тепловых се­тей используют различные материалы: минеральную вату, пенобетон, армо-пенобетон, газобетон, перлит, асбестоцемент, совелит, керамзитобетон и др. При канальной прокладке широко применяют подвесную изоляцию из мине­ральной ваты, при бесканальной - из автоклавного армопенобетона, асфаль-тоизола, битумоперлита и пеностекла, а иногда и засыпную изоляцию.

Тепловая изоляция состоит, как правило, из трех слоев: теплоизоляци­онного, покровного и отделочного. Покровный слой предназначен для за­щиты изоляции от механических повреждений и попадания влаги, т. е. для сохранения теплотехнических свойств. Для устройства покровного слоя используют материалы, обладающие необходимой прочностью и влагоне-проницаемостью: толь, пергамин, стеклоткань, фольгоизол, листовую сталь и дюралюминий.

В качестве покровного слоя при бесканальной прокладке теплопрово­дов в умеренно влажных песчаных грунтах применяют усиленную гидро­изоляцию и асбестоцементную штукатурку по каркасу из проволочной сет­ки; при канальной прокладке - асбестоцементную штукатурку по каркасу из проволочной сетки; при надземной прокладке - асбестоцементные полу­цилиндры, кожух из тонколистовой стали, оцинкованную или окрашенную алюминиевую краску.

Подвесная изоляция представляет собой цилиндрическую оболочку на поверхности трубы, изготовленную из минеральной ваты, формованных изделий (плит, скорлуп и сегментов) и автоклавного пенобетона.

Толщину слоя тепловой изоляции принимают согласно расчету. В ка­честве расчетной температуры теплоносителя принимают максимальную, если она не изменяется в течение рабочего периода сети (например, в паро­вых и конденсатных сетях и трубах горячего водоснабжения), и среднюю за год, если температура теплоносителя изменяется (например, в водяных се­тях). Температуру окружающей среды в коллекторах принимают +40°С, грунта на оси труб - среднюю за год, температуру наружного воздуха при надземной прокладке - среднюю за год. В соответствии с нормами проек­тирования тепловых сетей предельная толщина тепловой изоляции прини­мается исходя из способа прокладки:

При надземной прокладке и в коллекторах при диаметре труб 25-1400
мм толщина изоляции 70-200 мм;

В каналах для паровых сетей - 70-200 мм;

Для водяных сетей - 60-120 мм.

Арматуру, фланцевые соединения и другие фасонные части тепловых сетей, так же, как и трубопроводы, покрывают слоем изоляции толщиной, равной 80% толщины изоляции трубы.

При бесканальной прокладке теплопроводов в грунтах с повышенной коррозионной активностью возникает опасность коррозии труб от блуж­дающих токов. Для защиты от электрокоррозии предусматривают меро­приятия, исключающие проникание блуждающих токов к металлическим трубам, либо устраивают так называемый электрический дренаж или ка­тодную защиту (станции катодной защиты).

Завод информационных технологий «ЛИТ» в г. Переславль-Залесский выпускает гибкие теплоизоляционные изделия из вспененного полиэтилена с закрытой поровой структурой «Энергофлекс». Они экологически безопас­ны, так как изготавливаются без применения хлорфторуглеродов (фреона). В процессе эксплуатации и при переработке материал не выделяет в окру­жающую среду токсичных веществ и не оказывает вредных воздействий на организм человека при непосредственном контакте. Работа с ним не требу­ет специальных инструментов и повышенных мер безопасности.

«Энергофлекс» предназначен для теплоизоляции инженерных комму­никаций с температурой теплоносителя от минус 40 до плюс 100 °С.

Изделия «Энергофлекс» выпускаются в следующем виде:

Трубки 73 типоразмеров с внутренним диаметром от 6 до 160 мм и
толщиной стенки от 6 до 20 мм;

Рулоны шириной 1 м и толщиной 10, 13 и 20 мм.

Коэффициент теплопроводности материала при 0°С равен 0,032Вт/(м-°С).

Минераловатные теплоизоляционные изделия производятся предпри­ятиями АО «Термостепс» (г.г. Тверь, Омск, Пермь, Самара, Салават, Яро­славль), АКСИ (г. Челябинск), АО «Тизол», Назаровским ЗТИ, заводом «Комат» (г. Ростов-на-Дону), ЗАО «Минеральная вата» (г. Железнодорож­ный Московской обл.) и др.

Применяются также импортные материалы фирм ROCKWOLL, Рагос, Izomat и др.

Эксплуатационные свойства волокнистых теплоизоляционных мате­риалов зависят от состава используемого различными производителями исходного сырья и технологического оборудования и изменяются в доста­точно широком диапазоне.

Техническая тепловая изоляция из минеральной ваты делится на два типа: высокотемпературная и низкотемпературная. Компанией ЗАО «Ми­неральная вата» выпускается тепловая изоляция «ROCKWOLL» в виде стекловолокнистых минераловатных плит и матов. Более 27% от всех про­изводимых в России волокнистых теплоизоляционных материалов прихо­дится на долю теплоизоляции URSA, выпускаемой ОАО «Флайдерер-Чудово». Эти изделия изготавливаются из штапельного стеклянного волок­на и отличаются высокими теплотехническими и акустическими характери­стиками. В зависимости от марки изделия коэффициент теплопроводности


такой изоляции колеблется от 0,035 до 0,041 Вт/(м-°С), при температуре 10°С. Изделия характеризуются высокими экологическими показателями; их можно применять, если температура теплоносителя находится в преде­лах от минус 60 до плюс 180°С.

ЗАО «Изоляционный завод» (г. Санкт-Петербург) выпускает изолиро­ванные трубы для теплосетей. В качестве изоляции здесь применяется ар-мопенобетон, к преимуществам которого следует отнести:

Высокую предельную температуру применения (до 300°С);

Высокую прочность на сжатие (не менее 0,5 МПа);

Возможность применения при бесканальной прокладке на любой глу­
бине заложения теплопроводов и во всех грунтовых условиях;

Наличие на изолируемой поверхности пассивирующей защитной
пленки, возникающей при соприкосновении пенобетона с металлом трубы;

Изоляция является негорючей, что позволяет использовать ее при всех
видах прокладки (надземно, подземно, канально или бесканально).

Коэффициент теплопроводности такой изоляции равен 0,05-0,06 Вт/(м-°С).

Одним из самых перспективных способов на сегодняшний день явля­ется применение предварительно изолированных трубопроводов беска­нальной прокладки с пенополиуретановой (ППУ) изоляцией в полиэтиле­новой оболочке. Применение трубопроводов типа «труба в трубе» является наиболее прогрессивным способом энергосбережения в строительстве теп­ловых сетей. В США и Западной Европе, особенно в северных регионах, эти конструкции применяются уже с середины 60-х г.г. В России - всего лишь с 90-х г.г.

Основные преимущества таких конструкций:

Повышение долговечности конструкций до 25-30 лет и более, т. е. в
2-3 раза;

Снижение тепловых потерь до 2-3 % по сравнению с существующими
20^40% (и более) в зависимости от региона;

Уменьшение эксплуатационных расходов в 9-10 раз;

Снижение расходов на ремонт теплотрасс не менее чем в 3 раза;

Снижение капитальных затрат при строительстве новых теплотрасс в
1,2-1,3 раза и значительное (в 2-3 раза) снижение сроков строительства;

Значительное повышение надежности теплотрасс, сооружаемых по
новой технологии;

Возможность применения системы оперативного дистанционного
контроля за увлажнением изоляции, что позволяет своевременно реагиро­
вать на нарушение целостности стальной трубы или полиэтиленового гид­
роизоляционного покрытия и заранее предотвращать утечки и аварии.

По инициативе Правительства Москвы, Госстроя России, РАО «ЕЭС России», ЗАО «МосФлоулайн», Корпорации «ТВЭЛ» (г. Санкт-Петербург) и ряда других организаций в 1999 г. была создана Ассоциация производи­телей и потребителей трубопроводов с индустриальной полимерной изоля­цией.


ГЛАВА 6. КРИТЕРИИ ВЫБОРА ОПТИМАЛЬНОГО ВАРИАНТА

Тепловая сеть – это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя (воды или пара) от источника (ТЭЦ или котельной) к тепловым потребителям.

От коллекторов прямой сетевой воды ТЭЦ или от районных котельных с помощью магистральных теплопроводов горячая вода подается в городской массив. Магистральные теплопроводы имеют ответвления, к которым присоединяется внутриквартальная разводка к центральным тепловым пунктам (ЦТП). В ЦТП находится теплообменное оборудование с регуляторами, обеспечивающее снабжение квартир и помещений горячей водой.

Теплопроводы могут быть подземными и надземными.

Надземные теплопроводы обычно прокладывают по территориям промышленных предприятий и промышленных зон, не подлежащих застройке, при пересечении большого числа железнодорожных путей, т.е. везде, где либо не вполне эстетический вид теплопроводов не играет большой роли, либо затрудняется доступ к ревизии и ремонту теплопроводов. На дземные теплопроводы долговечнее и лучше приспособлены к ремонтам.

Рис. Основные виды надземной прокладки теплопроводов а-на отдельно стоящих опорах (мачтах), б-на эстакадах, в - на подвесных (ва - Д) нтовых) конструкциях, 1 - металлическая "/ вершина, 2 - подвесные опоры, 3 - тяги

В жилых районах из эстетических соображений используется подземная прокладка теплопроводов, которая бывает бесканальной и канальной.

При бесканальной прокладке участки теплопровода укладывают на специальные опоры непосредственно на дне вырытых грунтовых каналов, сваривают между собой стыки, защищают их от воздействия агрессивной среды и засыпают грунтом. Бесканальная прокладка – самая дешевая, однако теплопроводы испытывают внешнюю нагрузку от давления грунта (заглубление теплопровода должно быть 0,7 м), более подвержены воздействию агрессивной среды (грунта) и менее ремонтопригодны.

Рис. Типы бесканальных теплопроводов "А - в сборной и монолитной оболочке; б - литые и сборно-литые; в - засыпные

При канальной прокладке теплопроводы помещаются в каналы из сборных железобетонных элементов, изготовленных на заводе. При такой прокладке теплопровод разгружается от гидростатического действия грунта, находится в более комфортных условиях, более доступен для ремонта.

По возможности доступа к теплопроводам каналы делятся на

проходные, полупроходные и непроходные.

Рис. Размещение трубопроводов и кабелей в коммуникационном коллекторе: 1- водопровод; 2- электрические кабели; 3- светильник; 4- технологические трубопроводы; 5- теплопроводы

В проходных каналах кроме трубопроводов подающей и обратной сетевой воды, размещают водопроводные трубы питьевой воды, силовые кабели и т.д. Это наиболее дорогие каналы, но и наиболее надежные, так как позволяют организовать постоянный легкий доступ для ревизий и ремонта, без нарушения дорожных покрытий и мостовых. Такие каналы оборудуются освещением и естественной вентиляцией.


Внутренние габариты коллекторов определяются следующими требованиями:

A) ширина прохода должна быть не менее 800 мм, высота 1800 мм;

Б) расстояние в свету от поверхности изоляции теплопроводов до стенки и пола коллектора - 200 мм при диаметре трубопровода 500.. .700 мм и 220 мм при диаметре трубопровода 800...900 мм и до перекрытия коллектора соответственно - 120 и 150 мм;

B) расстояния между поверхностями изоляции теплопроводов - 200 мм (при диаметре трубопроводов 500.. .900 мм);

Г) расстояние от поверхности труб водопровода, напорной канализации и воздуховодов до строительных конструкций коллектора и до кабелей не менее 200 мм;

Д) расстояние по вертикали между консолями для укладки силовых кабелей - 200 мм, для контрольных кабелей и кабелей связи - 150 мм;

Е) горизонтальное расстояние в свету между силовыми кабелями должно быть равно диаметру кабеля, но не менее 35 мм.

Рис. 3.2. Прокладка сети теплоснабжения в непроходном канале: а - сборный из железобетонных плит; б - сводчатый с опорной рамой;

1- железобетонное основание: 2- стеновой блок; 3- навесная теплоизоляция; 4- блок перекрытия; 5- подушка; 6- железобетонный свод

Непроходные каналы позволяют разместить в себе только подающий и обратный теплопроводы, для доступа к которым необходимо срывать слой грунта и снимать верхнюю часть канала. В непроходных каналах и бесканально прокладывается большая часть теплопроводов, Непроходные каналы применяют для труб диаметром 500-700 мм. Каналы могут быть железобетонными, асбестоцементными и металлическими. Снаружи каналы изолируют от влаги битумом и оклеивают гидрозащитным материалом.

Полупроходные каналы сооружают в тех случаях, когда к теплопроводам необходим постоянный, но редкий доступ. Полупроходные каналы имеют высоту не менее 1400 мм, что позволяет человеку передвигаться в нем в полусогнутом состоянии, выполняя осмотр и мелкий ремонт тепловой изоляции.

Трубопроводы тепловых сетей могут быть проложены на земле, в земле и над землей. При любом способе монтажа трубопроводов необходимо обеспечивать наибольшую надежность работы системы теплоснабжения при наименьших капитальных и эксплуатационных затратах.

Капитальные затраты определяются стоимостью строительно-монтажных работ и затраты на оборудование и материалы для прокладки трубопровода. В эксплуатационные включают затраты по обслуживанию и содержанию трубопроводов, а так же затраты связанные с потерей тепла в трубопроводах и расходом электроэнергии на всей трассе. Капитальные затраты определяются в основном стоимостью оборудования и материалов, а эксплуатационные - стоимостью тепла, электроэнергии и ремонта.

Основными видами прокладками трубопроводов являются подземная и надземная . Подземная прокладка трубопроводов наиболее распространена. Она подразделяется на прокладку трубопроводов непосредственно в земле (бесканальная) и в каналах. При наземной прокладке трубопроводы могут находиться на земле или над землей на таком уровне, что бы они не препятствовали движению транспорта. Надземные прокладки применяются на загородных магистралях при пересечении оврагов, рек, железнодорожных путей и других сооружений.

Надземные прокладки трубопроводов в каналах или лотках расположенных на поверхности земли или частично заглубленных, применяются, как правило, в районах с вечномерзлыми грунтами.

Способ монтажа трубопроводов зависит от местных условий объекта - назначения, эстетических требований, наличия сложных пересечений с сооружениями и коммуникациями, категории грунта - и должен приниматься на основании технико-экономических расчетов возможных вариантов. Минимальные капитальные затраты требуются на монтаж теплотрассы с использованием подземной прокладки труб без излояции и каналов. Но значительные потери тепловой энергии, особенно во влажных грунтах, приводят к существенным дополнительным затратам и к преждевременному выходу трубопроводов из строя. В целях обеспечения надежности работы теплопроводов необходимо применять механическую и тепловую их защиту.

Механическая защита труб при монтаже труб под землей может быть обеспечена путем устройства каналов, а тепловая защита - путаем применения тепловой изоляции, нанесенной непосредственно на наружную поверхность трубопроводов. Изоляция труб и прокладка их в каналах увеличивают первоначальную стоимость теплотрассы, но быстро окупаются в процессе эксплуатации за счет повышения эксплуатационной надежности и уменьшения тепловых потерь.

Подземная прокладка трубопроводов.

При монтаже трубопроводов тепловых сетей под землей могут быть использованы два способа:

  1. Непосредственная прокладка труб в земле (бесканальная).
  2. Прокладка труб в каналах (канальная).

Прокладка трубопроводов в каналах.

Для того, что бы защитить теплопро-вод от внешних воздействий, и для обеспечения свободного теплового удлинения труб предназначе-ны каналы. В зависимости от ко-личества прокладывае-мых в одном направле-нии теплопроводов при-меняют непроходные, по-лу проходные или про-ходные каналы.

Для закрепления трубопровода, а так же обеспечения свободного перемещения при температурных удлинениях трубы укладывают па опоры. Что бы обеспечить отток воды лотки укладываются с уклоном не менее 0,002. Вода из нижних точек лотков удаляется самотеком в систему дренажа или из специальных приямков при помощи насоса откачивается в канализацию.

Кроме продольного уклона лотков, перекрытия так же должны иметь поперечный уклон порядка 1-2% для отвода паводковой и атмосферной влаги. При высоком уровне грунтовых вод наружную поверхность стенок, перекрытия и дна канала покрывают гидроизоляцией.

Глубина прокладки лотков принимается из условия минимального объема земляных работ и равномерного распре-деления сосредоточенных нагрузок на перекрытие при движении автотранспорта. Слой грунта над каналом должен состав-лять порядка 0,8—1,2 м и не менее. 0,6 м в мес-тах, где движение автотранспорта запрещено.

Непроходные каналы применяются при большом числе труб небольшого диа-метра, а так же двухтрубной прокладке для всех диаметров. Их конструкция зависит от влажности грунтов. В сухих грунтах наибольшее распространение получили блочные каналы с бетонными или кирпичными стенками либо железобе-тонные одно- или многоячейковые.

Стенки канала могут иметь толщину 1/2 кирпича (120 мм) при трубопроводах небольшого диаметра и 1 кирпич (250 мм) при трубопроводах крупных диа-метров.

Стенки возводят только из обыкновенного кирпича марки не ниже 75. Силикатный кирпич из-за малой его морозоустойчивости применять не рекомендуется. Каналы перекрывают железобетонной плитой. Кирпичные каналы в зависимости от категории грунта имеют несколько разновидностей. В плотных и сухих грунтах дно канала не требует бетонной подготов-ки, достаточно хорошо утрамбовать щебень непосредст-венно в грунт. В слабых грунтах на бетонное основание укладывают дополнительно железобетонную плиту. При высоком уровне стояния грунтовых вод для их отвода предусматривают дренаж. Стенки возводят после монтажа и изоляции трубопро-водов.

Для трубопроводов крупных диаметров применяют каналы, собираемые из стандартных железобетонных эле-ментов лоткового типа КЛ и КЛс, а также из сборных железо-бетонных плит КС.

Каналы типа КЛ состоят из стандартных лотковых элемен-тов, перекрываемых плоскими железобетонными плитами.

Каналы типа КЛс состоят из двух лотковых элементов, уложенных друг на друга и соединенных на цементном растворе при помощи двутавра.

В каналах типа КС стеновые панели устанав-ливают в пазы плиты днища и заливают бетоном. Эти каналы перекрывают плоскими железобетонными плитами.

Основания каналов всех типов выполняют из бетонных плит или пес-чаной подготовки в зависимости от вида грунта.

Наряду с рассмотрен-ными выше каналами применяются и другие их типы.

Сводча-тые каналы состоят из железобетонных сводов или скорлуп полукруглой формы, которыми накрывают трубопровод. На дне траншеи выпол-няют лишь основание ка-нала.

Для трубопроводов крупного диаметра применяют сводчатый двухячейковый ка-нал с разделительной стенкой, при этом свод канала образуется из двух полусводов.

При монтаже непроходного ка-нала, предназначенного для прокладки в мокрых и слабых грунтах стенки и дно канала выполняют в виде железобе-тонного корытообразного лотка, а перекрытие состоит из сборных железобетонных плит. Наружная поверхность лотка (стенки и дно) покрывается гидроизоляцией из двух слоев рубероида на битумной мастике, поверхность основания также покрывают гидроизоляцией затем устанавливают или бетонируют лоток. Перед засыпкой траншеи гидроизоляцию защищают спе-циальной стенкой, выполненной из кирпича.

Замена труб, вышедших из строя, или ремонт тепловой изоляции в таких каналах возможны только при разработке групп, а иногда и разборки мостовой. Поэтому тепловая сеть в непроход-ных каналах трассируется вдоль газонов или на территории зе-леных насаждений.

Полупроходные каналы. В сложных условиях пересечения теплопроводами существующих подземных устройств (под проезжей частью, при высоком уровне стояния грунтовых вод) вместо непроходных устраивают полупроходные каналы. Полу-проходные каналы применяют также при небольшом количестве труб в тех местах, где по условиям эксплуатации вскрытие про-езжей части исключено. Высоту полупроходного канала прини-мают равной 1400 мм. Каналы выполняют из сборных железобе-тонных элементов. Конструкции полупроходных и проходных каналов практически аналогичны.

Проходные каналы применяют при наличии большого количества труб. Их прокладывают под мостовыми крупных магистралей, на территориях боль-ших промышленных предприятий, на участках, прилегающих к зданиям теплоэлектроцентралей. Наряду с теплопроводами в проходных каналах располагают и другие подземные коммуни-кации - электрокабели, телефонные кабели, водопровод, газо-провод и т. п. В коллекторах обеспечивается свободный доступ обслуживающего персонала к трубопроводам для осмотра и ликвидации аварии.

Проходные каналы должны иметь естественную вентиляцию с трехкратным обменом воздуха, обеспечивающую температуру воздуха не более 40° С, и освещение. Входы в проходные каналы устраивают через каждые 200 - 300 м. В местах, где располага-ются сальниковые компенсаторы, предназначенные для восприя-тия тепловых удлинений, запорные устройства и другое оборудо-вание, устраивают специальные ниши и дополнительные люки. Высота проходных каналов должна быть не менее 1800 мм.

Их конструкции бывают трех типов — из ребри-стых плит, из звеньев рамной конструкции и из блоков.

Проходные каналы из ребристых плит , выполняют из четырех железобетонных панелей: днища, двух стенок и плиты перекрытия, изготовляемых заводским способом на про-катных станах. Панели соединены болтами, а наружная поверх-ность перекрытия канала покрывается изоляцией. Секции канала устанавливаются па бетонную плиту. Вес одной секции такого ка-нала сечением 1,46х1,87 м и длиной 3,2 м составляет 5 т, входы устраивают через каждые 50 м.

Проходной канал из железо-бетонных звеньев рамной конструкции , сверху покрывается изоляцией. Элементы канала имеют длину 1,8 и 2,4 м и бывают нормальной и повышенной прочности при заглублении соответст-венно до 2 и 4 м над перекрытием. Железобетонную плиту подкладывают только под стыками звеньев.

Следующий вид это коллектор, изготовляемый из же-лезобетонных блоков трех типов: Г-образного стенового, двух плит перекрытия и днища. Блоки в стыках соединяются моно-литным железобетоном. Эти коллекторы выполняются также нормальными и усиленными.

Бесканальная прокладка.

При бесканальной прокладке за-щиту трубопроводов от механических воздействий выполняет усиленная тепловая изоляция — оболочка.

Достоинствами бесканальной прокладки трубопроводов являются: сравнительно небольшая стоимость строительно-мон-тажных работ, уменьшение объема земляных работ и сокраще-ние сроков строительства. К ее недостаткам относятся: усложне-ние ремонтных работ и затруднение перемещения трубопрово-дов, зажатых грунтом. Бесканальную прокладку трубопроводов широко применяют в сухих песчаных грунтах. Она находит при-менение в мокрых грунтах, но с обязательным устройством в зо-не расположения труб дренажа.

Подвижные опоры при бесканальной прокладке трубопрово-дов не применяются. Трубы с теплоизоляцией укладывают не-посредственно на песчаную подушку, находящуюся на предвари-тельно выровненном дне траншеи. Песчаная подушка, являю-щаяся постелью для труб, имеет наилучшие упругие свойства и допускает наибольшую равномерность температурных переме-щений. В слабых и глинистых грунтах слой песка на дне траншеи должен быть толщиной не менее 100-150 мм. Неподвижные опо-ры при бесканальной прокладке труб представляют собой желе-зобетонные стенки, устанавливаемые перпендикулярно теплопро-водам.

Компенсация тепловых перемещений труб при любом спосо-бе их бесканальной прокладки обеспечивается при помощи гну-тых или сальниковых компенсаторов, устанавливаемых в специ-альных нишах или камерах.

На поворотах трассы во избежание зажатия труб в грунте и обеспечения возможных перемещений устраивают непроходные каналы. В местах пересечения стенки капала трубопроводом в результате неравномерной осадки грунта и основания канала происходит наибольший изгиб трубопроводов. Во избежание из-гиба трубы необходимо оставлять в отверстии стенки зазор, за-полняя его эластичным материалом (например, асбестовым шну-ром). Тепловая изоляция трубы включает в себя утеплительный слой из автоклавного бетона с объемным весом 400 кг/м3, имеющего стальную арматуру, гидроизоляционное покрытие, состоящей из трех слоев бризола на битумно-резиновой мастике, в состав которой входят 5—7% резиновой крошки и защитный слой, вы-полненный из асбестоцементной штукатурки по стальной сет-ке.

Обратные магистрали трубопроводов изолируются таким же образом, как и подающие. Однако наличие изоляции об-ратных магистралей зависит от диаметра труб. При диаметре труб до 300 мм устройство изоляции обяза-тельно; при диаметре труб 300-500 мм устройство изоляции должно быть определено технике экономическим расчетом исходя из местных условий; при диаметре труб 500 мм и более уст-ройство изоляции не предусматривается. Трубопроводы при такой изоляции укладывают непосредст-венно на выровненный уплотненный грунт основания траншеи.

Для понижения уровня грунтовых вод предусматривают специальные дренажные трубопроводы, которые укладывают на глубине 400 мм от дна канала. В зависимости от условий работы дренажные устройства могут быть выполнены из различных труб: для безнапорных дренажей применяют керамические бетонные и асбестоцементные, а для напорных - стальные и чу-гунные.

Дренажные трубы прокладывают с уклоном 0,002—0,003. На поворотах и при перепадах уровней труб устраивают специаль-ные смотровые колодцы по типу канализационных.

Надземная прокладка трубопроводов.

Если исходить из удобства монтажа и обслуживания то прокладка труб над землей является более выгодна чем прокладка под землей. Так же это требует меньших материальных затрат. Однако это поритит внешний вид окружающей среды и поэтому такой вид прокладки труб не везде может применяться.

Несущими конструкциями при надземной прокладке трубо-проводов служат: для небольших и средних диаметров — надзем-ные опоры и мачты, обеспечивающие расположение труб на нужном расстоянии от поверхности; для трубопроводов больших диаметров, как правило, опоры-эстакады. Опоры, обычно, выполняют из железобетонных блоков. Мачты и эстака-ды могут быть как стальными, так и железобетонными. Расстоя-ние между опорами и мачтами при надземной прокладке должно быть равно расстоянию между опорами в каналах и зависит от диаметров трубопроводов. В целях сокращения количества мачт устраивают при помощи растяжек промежуточные опоры.

При надземной прокладке тепловые удлинения трубопрово-дов компенсируются при помощи гнутых компенсаторов, требу-ющих минимальных затрат времени на обслуживание. Обслуживание арматуры производится со специально устраиваемых площадок. В качестве подвижных следует применить катковые опоры, создающие минимальные горизонтальные усилия.

Так же при надземной прокладке трубопроводов могут применяться низкие опоры, которые могут быть выполнены из металла или низких бетонных блоков. В местах пересечения такой трассы с пешеходными дорожками устанавливают специальные мостики. А при пересечении с автодорогами - или выполняют компенсатор нужной высоты или под дорогой прокладывают канал для прохода труб.

Бесканальная прокладка тепловых сетей отдается модернизации и приобретает все большую популярность в деятельности возведения и усовершенствования. При модернизации внутриквартальных теплолиний существуют наиболее массовые вероятности монтажа тепловых сетей в подвалах, чем во время нового возведения, т. к. возведение новейших линий зачастую обгоняет возведение сооружений.

В результате данной выкладки труб из стали, чтобы избежать неритмичные просадки, возбуждающей добавочные усиления, как правило, независимые стояки под труботрассой не ставят. Трубоводы здесь выкладывают на незатронутую почву либо на трамбованный песочный пласт. Независимые стояки используют только на поворотных углах и в местах постановки гнутых корректоров, где сберегаются канальные места.

Во время прокладки теплосетей отрывание рвов и обустройство основы необходимо предпринимать только при присутствии труб для возводимой части линий, беря во внимание, что разница в периодах промеж отрыванием рвов и выкладкой труб обязано быть наименьшим. По отношению к окрестным ситуациям и общепринятого в плане выполнения работ заключения, или формируют вдоль магистрали 1 либо несколько платформ для сварки. Где трубопровод (по 2-3) приваривают в элементы, или располагают и приваривают их в элементы прямо вдоль всей магистрали на дистанции 1.5-2 метра от отмеченного и означенного кольями края рва с 1 ее стороны, т.к. на следующую сторону будут выбрасывать грунт при рытье канавы.

Фото объектов

Объекты на карте

Видео компании "ПРОМСТРОЙ"

Посмотреть другие видео

Стоимость бесканальной прокладки тепловых сетей

Наименование услуги Цена
Техническое обслуживание тепловых пунктов (независимая схема) от 6 000 руб/мес
Техническое обслуживание тепловых пунктов (зависимая схема) от 10 000 руб/мес
Техническое обслуживание УУТЭ от 3 000 руб/мес
Установка УУТЭ от 250 000 руб
Гидравлические испытания (опресовка) от 7 000 руб
Химпромывка теплообменника от 8 000 руб

Бывает как канальная, так и бесканальная укладка труботрассы

При канальной

Методика выкладки теплотрассы в спецподготовленных траншеях считается более практичной и испытанной. Это всеохватывающий метод устройства тепломагистралей в почве любого вида. С этим методом можно:

  • Применять комплектующие из лоткового железобетона, также перекрывающие плиты в виде каналоформирующих строений труботрассы тепловой сети;
  • Применять теплоизоляцию (минвата, стекловолокно и др.) навесного вида;
  • Элиминировать контакт трубы с почвой, который может проявить на металл губительное механическое и эл. химическое действие;
  • Освободить труботассу от временных транспортных мощностей;
  • Оборудовать камеры на сетевых участках магистрали для сборки отводов, стопорно-контрольного и стабилизирующего оборудования;
  • Снабдить свободное контракционное перестроение труб при их сильном нагреве (продольное и пересекающее);
  • Понизить цену выкладки труб, т.к. нет дорогих сальниковых уплотнителей t расширения;
  • Снабдить добавочную безопасность от попадания ГВС, если имеются неисправности трубовода;

Траншея способна иметь монолитную конфигурацию и заливаться прямо на участке сборки либо монтироваться из раздельных подготовленных лотков. Подготовленные каналы - это единые инженерные проходы и распределители.

Бесканальная прокладка теплотрассы

В этом случае засыпают в отбавленном песком рве почвой без использования каких-то ограждающих строений. Данный метод при применении новейших теплоизолирующих изделий имеет множество достоинств.

В результате, при этой выкладке:

  1. Употребляются предизоляционные труботрассы;
  2. Понижается ценовая категория самой сборки;
  3. Нет ограждающих строений для трубопровода;
  4. Гарантируется типичное употребление магистрали при высокой степени почвенных вод;
  5. Нет типичного доступа штата к труботрассе для ревизии и исправления;

Алгоритм устройства данных тепловых сетей такой:

  1. Копание канавы;
  2. Подгонка ее основы и отсыпание грунтом;
  3. Выкладка самих труб;
  4. Засыпание и утрамбовка;
  5. Засыпание слоя из гравия, затем засыпание бетонного пересечения под асфальтирование;
  6. Засыпание либо облагораживание местности;
  7. Асфальтирование либо облагораживание местности;

Рассчитать стоимость бесканальной прокладки теплосетей за Вас

Раздельным типом бесканальной сборки магистрали теплопоставления считается способ горизонтального направленного сверления либо продавливания. Данная методика позволяет устраивать труботрассы под разными препятствиями: автомобильными дорогами, железнодорожными линиями, различными реками, а также каналами.

Преимуществами бесканальной прокладки считаются: довольно небольшая ценовая категория строительно-сборочных действий, снижение величины работ на земле и уменьшение периодов возведения.

К минусам можно отнести: сложность реконструкции и трудность передвижения магистрали, которые зажаты почвой. Данную выкладку тепловой магистрали широко употребляют в сухих песчаных почвах. Она определяет эксплуатацию во влажной земле, но с обязательным обустройством в местоположении размещения труб осушения.

Большим количеством строительно-сборочных учреждений используется для этой методики новейший тип теплоизоляции.