Сообщение расшифровка генетического кода. Однозначность генетического кода проявляется в том что

1. Код триплетен.

2. Код вырожден.

3. Код однозначен.

4. Код коллинеарен.

5. Код неперекрываем.

6. Код универсален.

1) Код триплетен. 3 расположенных рядом нуклеотида несут информацию об одном белке. Таких триплетов может быть 64 (в этом проявляется избыточность генетического кода), но только 61 из них несет информацию о белке (кодоны). 3 триплета называются антикодонами, являются стоп-сигналами, на которых останавливается синтез белка.

2) Код вырожден. Одну аминокислоту могут кодировать несколько кодонов.

3) Код однозначен. Каждый кодон шифрует только одну аминокислоту.

4) Код коллинеарен. последовательность нуклеотидов в гене соответствует последовательности аминокислот в белке.

5) Код неперекрываем. один и тот же нуклеотид не может входить в состав двух разных кодонов, считывание идет непрерывно, подряд, вплоть до стоп-кодона. В коде отсутствуют «знаки препинания».

6) Код универсален. Одинаков для всех живых существ, т.е. один и тот же триплет кодирует одну и ту же аминокислоту.

61. В каких случаях изменение последовательности нуклеотидов в гене не влияет на структуру и функции кодирующего белка?

1) если в результате замены нуклеотида возникает другой кодон, кодирующий ту же аминокислоту;

2) если кодон, образовавшийся в результате замены нуклеотида, кодирует другую аминокислоту, но со сходными химическими свойствами, не изменяющую структуру белка;

3) если изменения нуклеотидов произойдут в меж генных или нефункционирующих участках ДНК.

№62. Репликация ДНК.

Краткий обзор:

Реплика́ция - процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков, называемый реплисомой.

К моменту деления ДНК должна быть реплицирована полностью и только один раз. Репликация проходит в три этапа:

1. Инициация репликации (ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов. В определённом сайте (точка начала репликации) происходит локальная денатурация ДНК, цепи расходятся и образуются две репликативные вилки, движущиеся в противоположных направлениях.).

2. Элонгация (этап биосинтеза молекул нуклеиновых кислот, заключающийся в последовательном присоединении мономеров (нуклеотидов) к растущей цепи ДНК).

3. Терминация репликации (завершающий этап, происходит в тот момент, когда между фрагментами Оказаки происходит заполнение пустых участков нуклеотидами).

Основная часть:

Поскольку ДНК является молекулой наследственности, то для реализации этого качества она должна точно копировать саму себя и таким образом сохранять всю имеющуюся в исходной молекуле ДНК информацию в виде определенной последовательности нуклеотидов. Это обеспечивается за счет особого процесса, предшествующего делению любой клетки организма, который называется репликацией ДНК - процесса синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК .

Репликация ДНК происходит в три этапа:

1. Инициация . Заключается в том, что специальные ферменты -ДНК хеликазы, раскручивающие двуцепочечную спираль ДНК, разрывают слабые водородные связи, которые соединяют между собой нуклеотиды двух цепей. В результате цепи ДНК разъединяются, и из каждой цепи «торчат» свободные азотистые основания (возникновение так называемой вилки репликации).

2. Элонгация (этап биосинтеза молекул нуклеиновых кислот, заключающийся в последовательном присоединении мономеров (нуклеотидов) к растущей цепи ДНК). Каждая из двух нитей ДНК служит матрицей для синтеза новой нити. Так как родительские нити антипараллельны, то непрерывная репликация ДНК происходит только на одной нити, которая называется ведущей (лидирующей). Особый фермент ДНК-полимераза начинает двигаться вдоль свободной цепи ДНК от 5"- к З"-концу, помогая присоединиться свободным нуклеотидам, постоянно синтезируемым в клетке, к З"-концу вновь синтезируемой цепи ДНК. Синтез новой цепи на отстающей нити требует постоянного образования новых затравок (т.н. праймеров - коротких фрагментов нуклеиновой кислоты, используемых ДНК- полимеразами для инициации синтеза ДНК) для начала репликации и осуществляется небольшими сегментами по 1000-2000 нуклеотидов в каждом (фрагменты Оказаки). Затравки деградируют после завершения синтеза следующего фрагмента Оказаки. Образованные соседние фрагменты ДНК соединяются ДНК-лигазой. Топоизомераза удаляет супервитки спирали, хеликаза обеспечивает раскручивание двойной спирали, белок SSB обеспечивает стабильность одноцепочечной ДНК.

3. Терминация (завершение) репликации происходит тогда, когда пробелы между фрагментами Оказаки заполнятся нуклеотидами (при участии ДНК-лигазы) с образованием двух непрерывных двойных цепей ДНК и когда встретятся две репликативные вилки. Затем происходит закручивание синтезированных ДНК с образованием суперспиралей.

63. Опишите последовательность процессов, происходящих при репликации ДНК у эукариот

Механизмы репликации ДНК прокариот и эукариот существенно различаются в том отношении, что во втором случае синтез ведущей и отстающей цепей ДНК осуществляют разные ДНК-полимеразы (альфа и дельта соответственно), тогда как у E. coli обе цепи ДНК синтезируются димером ДНК-полимеразы III . ДНК-полимераза альфа проводит инициацию синтеза ведущей цепи в точках начала репликации, а ДНК-полимераза дельта осуществляет циклические реинициации синтеза фрагментов Оказаки, по-видимому, распознавая наличие 5"-концевого нуклеотида очередного праймера с последующей диссоциацией от матричной ДНК и присоединением к ней для реинициации синтеза следующего фрагмента Оказаки.

Созревание фрагментов Оказаки у эукариот требует удаления РНК-затравок с помощью 5"->3"-экзонуклеазы (белковые факторы FEN-1 или MF-1) и РНКазы H1 , а также ковалентного соединения фрагментов друг с другом под действием ДНК-лигазы I .

В настоящее время не известно, что именно служит пусковым сигналом для начала репликации ДНК в S фазе. Инициирующее событие, после которого начинается синтез ДНК, происходит в определенных местах, называемых " репликационные вилки ". Во время S фазы кластеры репликационных вилок активируются одновременно во всех хромосомах.

Положение участков начала репликации в генах может иметь важное биологическое значение. Тот факт, что у ряда вирусов животных репликация начинается в определенных участках генома, позволяет предположить, что места начала репликации представляют собой специализированные последовательности в хромосомной ДНК. Среднее расстояние между местами начала репликации сравнимо со средним расстоянием между соседними петлями хроматина. Таким образом, возможно, что в каждой петле имеется лишь один участок начала репликации.

При расхождении двух репликационных вилок от одной точки начала репликации по разные стороны от этой точки родительские нуклеосомы будут попадать в разные дочерние спирали ДНК. В этом случае от точного расположения места начала репликации в транскрипционной единице будет зависеть распределение предсуществующих родительских гистонов между двуми дочерними генами. Не все нуклеосомы абсолютно одинаковы - в разных областях генетического материала структура хроматина различна. Точное положение места начала репликации в гене могло бы поэтому иметь важное биологическое значение, так как определяло бы структуру хроматина этого гена в следующем поколении клеток.

Пусковой механизм репликации ДНК явно работает по принципу "все или ничего", поскольку начавшаяся в S фазе репликация ДНК продолжается до полного завершения этого процесса. Контроль процесса репликации по принципу "все или ничего" может осуществляться по меньшей мере двумя различными способами:

1) некая общая система может специфически узнавать каждую хромосомную полосу, деконденсировть ее и тем самым делать все точки начала репликации одновременно доступными для белков, ответственных за образование репликационых пузырей;

2) репликативные белки могут узнавать лишь несколько точек начала репликации из данного набора, после чего начавшаяся локальная репликация будет изменять структуру остального хроматина репликативной единицы таким образом, что станет возможной репликация во всех других начальных точках.

Возможно, что критическим моментом в цепи событий, инициирующих репликацию ДНК, является достижение определенной стадии в процессе удвоения центриоли, которая действует и как часть важного центра организации микротрубочек, тесно связанного с интерфазным ядром, и как компонент каждого из полюсов веретена во время митоза. По-видимому, центриоль удваивается путем матричного процесса один раз за клеточный цикл (рис. 11-19).

Пока не известно также, чем определяется фиксированная последовательность репликации хромосомных полос. Для объяснения такой последовательности было предложено две гипотезы. Согласно одной из них, различные репликативные белки, каждый из которых специфичен в отношении хромосомных полос опредеоенного типа, синтезируются в фазе S в разное время. Согласно другой гипотезе, которая сейчас кажется более правдоподобной, репликативные белки просто действуют на те участки ДНК, которые для них более доступны; например, в течение фазы S может происходить непрерывная деконденсация хромосом, и хромосомные полосы одна за другой становятся доступными для репликативных белков.

Генетический код - это особенная шифровка наследственной информации с помощью молекул Основываясь на этой гены соответствующе управляют синтезом белков и ферментов в организме, определяя тем самым обмен веществ. В свою очередь, строение отдельных белков и их функции обуславливается расположением и составом аминокислот - структурных единиц молекулы белка.

В середине прошлого века были выявлены гены, которые являются отдельными участками (сокращенно - ДНК). Звенья нуклеотидов образуют в характерную двойную цепь, собранную в форме спирали.

Ученые нашли связь между генами и химической структурой отдельных белков, сущность которой состоит в том, что структурный порядок расположения аминокислот в молекулах белка полностью соответствует порядку нуклеотидов в гене. Установив эту связь, ученые решили расшифровать генетический код, т.е. установить законы соответствия структурных порядков нуклеотидов в ДНК и аминокислот в белках.

Существует всего четыре типа нуклеотидов:

1) А - адениловые;

2) Г - гуаниловые;

3) Т - тимидиловые;

4) Ц - цитидиловые.

В состав белков входит двадцать видов основных аминокислот. С расшифровкой генетического кода возникли трудности, поскольку нуклеотидов гораздо меньше, чем аминоскислот. При решении этой проблемы было высказано предположение, что аминокислоты кодируются различными сочетаниями из трех нуклеотидов (так называемым кодоном или триплетом).

Кроме того, необходимо было объяснить, как именно располагаются триплеты вдоль гена. Так возникли три основные группы теорий:

1) триплеты следуют друг за другом непрерывно, т.е. формируют сплошной код;

2) триплеты располагаются с чередованием «бессмысленных» участков, т.е. формируются так называемые «запятые» и «абзацы» в коде;

3) триплеты могут перекрываться, т.е. конец первого триплета может формировать начало следующего.

В настоящее время в основном используют теорию о непрерывности кода.

Генетический код и его свойства

1) Код триплетен - он состоит из произвольных сочетаний трех нуклеотидов, которые образуют кодоны.

2) Генетический код избыточен - его триплетности. Одна аминокислота может быть закодирована несколькими кодонами, поскольку кодонов, по математическим подсчетам, в три раза больше, чем аминокислот. Некоторые кодоны выполняют определенные терминирующие функции: одни могут быть «стоп-сигналами», которые программируют окончание производства аминокислотной цепи, а другие могут обозначать инициирование считывания кода.

3) Генетический код однозначен - каждому из кодонов может соответствовать только одна аминокислота.

4) Генетический код обладает коллинеарностью, т.е. последовательность нуклеотидов и последовательность аминокислот четко соответствуют друг другу.

5) Код записан непрерывно и компактно, «бессмысленные» нуклеотиды в нем отсутствуют. Он начинается определенным триплетом, который сменяется следующим без перерыва и заканчивается терминирующим кодоном.

6) Генетический код обладает универсальностью - гены любого организма кодируют информацию о белках абсолютно одинаково. Это не зависит от уровня сложности организации организма или его системного положения.

Современная наука предполагает, что генетический код возникает непосредственно при зарождении нового организма из костной материи. Случайные изменения и процессы эволюции делают возможными любые варианты кода, т.е. аминокислоты могут переставляться в любой последовательности. Почему в ходе эволюции выжил именно такой вид кода, почему код универсален и имеет подобную структуру? Чем больше наука узнает о феномене генетического кода, тем больше возникает новых загадок.

Под генетическим кодом принято понимать такую систему знаков, обозначающих последовательное расположение соединений нуклеотидов в ДНКа и РНКа, которая соответствует другой знаковой системе, отображающей последовательность аминокислотных соединений в молекуле белка.

Это важно!

Когда учёным удалось изучить свойства генетического кода, одним из главных была признана универсальность. Да, как ни странно это звучит, все объединяет один, универсальный, общий генетический код. Формировался он на протяжении большого временного промежутка, и процесс закончился около 3,5 миллиардов лет назад. Следовательно, в структуре кода можно проследить следы его эволюции, от момента зарождения до сегодняшнего дня.

Когда говорится о последовательности расположения элементов в генетическом коде, имеется в виду, что она далеко не хаотична, а имеет строго определённый порядок. И это тоже во многом определяет свойства генетического кода. Это равнозначно расположению букв и слогов в словах. Стоит нарушить привычный порядок, и большинство того, что мы будем читать на книжных или газетных страницах, превратится в нелепую абракадабру.

Основные свойства генетического кода

Обычно код несёт в себе какую-либо информацию, зашифрованную особым образом. Для того чтобы расшифровать кода, необходимо знать отличительные особенности.

Итак, основные свойства генетического кода - это:

  • триплетность;
  • вырожденность или избыточность;
  • однозначность;
  • непрерывность;
  • уже указанная выше универсальность.

Остановимся подробнее на каждом свойстве.

1. Триплетность

Это когда три соединения нуклеотидов образуют последовательную цепочку внутри молекулы (т.е. ДНК или же РНК). В результате создаётся соединение триплета или кодирует одну из аминокислот, место её нахождения в цепи пептидов.

Различают кодоны (они же кодовые слова!) по их последовательности соединения и по типу тех азотистых соединений (нуклеотидов), которые входят в их состав.

В генетике принято выделять 64 кодоновых типа. Они могут образовывать комбинации из четырёх типов нуклеотидов по 3 в каждом. Это равносильно возведению числа 4 в третью степень. Таким образом, возможно образование 64-х нуклеотидных комбинаций.

2. Избыточность генетического кода

Это свойство прослеживается тогда, когда для шифрования одной аминокислоты требуется несколько кодонов, обычно в пределах 2-6. И только и триптофана можно кодировать с помощью одного триплета.

3. Однозначность

Она входит в свойства генетического кода как показатель здоровой генной наследственности. Например, о хорошем состоянии крови, о нормальном гемоглобине может рассказать медикам стоящий на шестом месте в цепочке триплет ГАА. Именно он несёт информацию о гемоглобине, и им же кодируется А если человек болен анемией, один из нуклеотидов заменяется на другую букву кода - У, что и является сигналом заболевания.

4. Непрерывность

При записи этого свойства генетического кода следует помнить, что кодоны, как звенья цепочки, располагаются не на расстоянии, а в прямой близости, друг за другом в нуклеиновой кислотной цепи, и цепь эта не прерывается - в ней нет начала или конца.

5. Универсальность

Никогда не следует забывать, что всё сущее на Земле объединено общим генетическим кодом. И потому у примата и человека, у насекомого и птицы, столетнего баобаба и едва проклюнувшейся из-под земли травинки одинаковыми триплетами кодируются схожие аминокислоты.

Именно в генах заложена основная информация о свойствах того или иного организма, своего рода программа, которую организм получает в наследство от живших ранее и которая существует как генетический код.

0

Генетический код — это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов в молекуле ДНК.

Реализация генетической информации в живых клетках (то есть синтез белка, закодированного в ДНК) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза иРНК на матрице ДНК) и трансляции (синтез полипептидной цепи на матрице иРНК).

В ДНК используется четыре нуклеотида — аденин (А), гуанин (Г), цитозин (Ц), тимин (T). Эти «буквы» составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменен урацилом (У). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности «букв».

В нуклеотидной последовательности ДНК имеются кодовые «слова» для каждой аминокислоты будущей молекулы белка — генетический код. Он заключается в определенной последовательности расположения нуклеотидов в молекуле ДНК.

Три стоящих подряд нуклеотида кодируют «имя» одной аминокислоты, то есть каждая из 20 аминокислот зашифрована значащей единицей кода — сочетанием из трех нуклеотидов, называемых триплет или кодон.

В настоящее время код ДНК полностью расшифрован, и мы можем говорить об определенных свойствах, характерных для этой уникальной биологической системы, обеспечивающей перевод информации с «языка» ДНК на «язык» белка.

Носителем генетической информации является ДНК, но так как непосредственное участие в синтезе белка принимает иРНК — копия одной из нитей ДНК, то чаще всего генетический код записывают на "языке РНК".

Аминокислота Кодирующие триплеты РНК
Аланин ГЦУ ГЦЦ ГЦА ГЦГ
Аргинин ЦГУ ЦГЦ ЦГА ЦГГ АГА АГГ
Аспарагин ААУ ААЦ
Аспарагиновая кислота ГАУ ГАЦ
Валин ГУУ ГУЦ ГУА ГУГ
Гистидин ЦАУ ЦАЦ
Глицин ГГУ ГГЦ ГГА ГГГ
Глутамин ЦАА ЦАГ
Глутаминовая кислота ГАА ГАГ
Изолейцин АУУ АУЦ АУА
Лейцин ЦУУ ЦУЦ ЦУА ЦУГ УУА УУГ
Лизин ААА ААГ
Метионин АУГ
Пролин ЦЦУ ЦЦЦ ЦЦА ЦЦГ
Серин УЦУ УЦЦ УЦА УЦГ АГУ АГЦ
Тирозин УАУ УАЦ
Треонин АЦУ АЦЦ АЦА АЦГ
Триптофан УГГ
Фенилаланин УУУ УУЦ
Цистеин УГУ УГЦ
СТОП УГА УАГ УАА

Свойства генетического кода

Три стоящих подряд нуклеотида (азотистых оснований) кодируют «имя» одной аминокислоты, то есть каждая из 20 аминокислот зашифрована значащей единицей кода — сочетанием из трех нуклеотидов, называемых триплет или кодон.

Триплет (кодон) — последовательность из трех нуклеотидов (азотистых оснований) в молекуле ДНК или РНК, определяющая включение в молекулу белка в процессе ее синтеза определенной аминокислоты.

  • Однозначность (дискретность)

Один триплет не может кодировать две разные аминокислоты, шифрует только одну аминокислоту. Определенный кодон соответствует только одной аминокислоте.

Каждая аминокислота может определяться более, чем одним триплетом. Исключение — метионин итриптофан . Другими словами — одной и той же аминокислоте может соответствовать несколько кодонов.

  • Неперекрываемость

Одно и то же основание не может одновременно входить в два соседних кодона.

Некоторые триплеты не кодируют аминокислоты, а являются своеобразными «дорожными знаками», которые определяют начало и конец отдельных генов, (УАА, УАГ, УГА), каждый из которых означает прекращение синтеза и расположен в конце каждого гена, поэтому мы можем говорить о полярности генетического кода.

У животных и растений, у грибов, бактерий и вирусов один и тот же триплет кодирует один и тот же тип аминокислоты, то есть генетический код одинаков для всех живых существ. Другими словами, универсальность — способность генетического кода работать одинаково в организмах разного уровня сложности от вирусов до человека. Универсальность кода ДНК подтверждает единство происхождения всего живого на нашей планете. На использовании свойства универсальности генетического кода основаны методы генной инженерии.

Из истории открытия генетического кода

Впервые идея о существовании генетического кода сформулирована А. Дауном и Г. Гамовым в 1952 — 1954 годах. Учёные показали, что последовательность нуклеотидов, однозначно определяющая синтез той или иной аминокислоты, должна содержать не менее трёх звеньев. Позднее было доказано, что такая последовательность состоит из трех нуклеотидов, названных кодоном или триплетом .

Вопросы о том, какие нуклеотиды ответственны за включение определенной аминокислоты в белковую молекулу и какое количество нуклеотидов определяет это включение, оставались нерешенными до 1961 года. Теоретический разбор показал, что код не может состоять из одного нуклеотида, поскольку в этом случае только 4 аминокислоты могут кодироваться. Однако код не может быть и дуплетным, то есть комбинация двух нуклеотидов из четырехбуквенного «алфавита» не может охватить всех аминокислот, так как подобных комбинаций теоретически возможно только 16 (4 2 = 16).

Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трех последовательных нуклеотидов, когда число возможных комбинаций составит 64 (4 3 = 64).

- единая система записи наследственной ин­формации в молекулах нуклеиновых кислот в виде последова­тельности нуклеотидов. Генетический код основан на использо­вании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода следующие:

1. Генетический код триплетен. Триплет (кодон) - последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав бел­ков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот оста­ются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказыва­ется равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 4 3 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими трип­летами (поскольку аминокислот 20, а триплетов - 64). Исключение составляют метионин и триптофан, которые кодируются только одним триплетом. Кроме того, некоторые триплеты вы­полняют специфические функции. Так, в молекуле иРНК три из них УАА, УАГ, УГА - являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одно­временно с избыточностью коду присуще свойство однозначнос­ти, которое означает, что каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. по­следовательность нуклеотидов в гене точно соответствует после­довательности аминокислот в белке.

5. Генетический код непере­крываем и компактен, т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов). Например, в иРНК следующая последовательность азотистых оснований АУГГУГЦУУААУГУГ будет считываться только такими трип­летами: АУГ, ГУГ, ЦУУ, ААУ, ГУГ, а не АУГ, УГГ, ГГУ, ГУГ и т. Д. или АУГ, ГГУ, УГЦ, ЦУУ и т. д. или еще каким-либо образом (допустим, кодон АУГ, знак препинания Г, кодон УГЦ, знак пре­пинания У и Т. п.).

6. Генетический код универсален, т. е. ядер­ные гены всех организмов одинаковым образом кодируют инфор­мацию о белках вне зависимости от уровня организации и систематического положения этих организмов.