Разница между опытом и экспериментом. Цель анкетирования и особенности его проведения

Асфальтобетон и его смеси – основное сырье при прокладке автомобильных трасс, покрытий возле аэропортов, торговых центров, жилых домов и т. д. Качество этих материалов в обязательном порядке должно соответствовать нормативным требованиям ГОСТ. Определение характеристик сырья возможно только в лабораторных условиях. Анализу подвергаются как компоненты самого асфальтобетона, так и пробы уже готовых покрытий (керны).

Экспертиза асфальтобетона: для кого актуальная услуга?

В экспертизе асфальтобетона заинтересованы все стороны, участвующие в дорожном строительстве. За ее счет непосредственные исполнители работ имеют возможность контролировать честность поставщиков материалов. Заказчики, контролирующие государственные органы, получают доказательства выполнения проекта на должном качественном уровне и эффективного расхода выделенных денег. Выступить инициатором проведения лабораторных испытаний материалов может каждая из указанных сторон.

Пройдя по ссылке http://ltsr.ru/ispytatelnaja-laboratorija/ispytanie-asfaltobetona/ , можно ознакомиться, как проходит экспертиза асфальтобетона в пределах лаборатории. Образцы для исследований в обязательном порядке отбирают ее специалисты, что полностью исключает вероятность искажения, «подтасовки» результатов исследований. Процедура взятия проб на объектах протоколируется в специальных актах. После этого отверстия, образовавшиеся на всю глубину дорожного покрытия, заполняют холодным асфальтом.

Какие задачи решает лабораторная экспертиза асфальта

Главной целью всех лабораторных исследований асфальта является повышение качества прокладываемых и уже существующих дорог. Достигнуть ее удается благодаря целому спектру практических задач, решаемых экспертизой:

  • подбор оптимального соотношения компонентов асфальтобетонной смеси;
  • оценка состояния дорожного покрытия и перспективы его дальнейшего использования;
  • выявление технологических отклонений при сдаче трасс в эксплуатацию.

Определение физико-химических показателей сырья, эксплуатационных параметров покрытий осуществляется в рамках нормативных требований ГОСТа. Все полученные результаты находят отражение в официальных экспертных заключениях. В случае необходимости эти документы могут быть использованы в качестве доказательной базы в судебных спорах.

Достучаться до небес [Научный взгляд на устройство Вселенной] Рэндалл Лиза

С КАКОЙ ЦЕЛЬЮ ПРОВОДЯТСЯ ИЗМЕРЕНИЯ?

Измерения не могут быть идеальными. В научных исследованиях - как и при принятии любого решения - нам приходится определять для себя приемлемый уровень неопределенности. Только в этом случае можно двигаться вперед. К примеру, если вы принимаете лекарство и надеетесь, что оно облегчит вам сильную головную боль, то вам, возможно, достаточно знать, что это лекарство помогает обычному человеку в 75% случаев. С другой стороны, если изменение стиля питания ненамного снизит ваши и без того невысокие шансы заболеть чем?нибудь сердечно–сосудистым (к примеру, с 5 до 4,9%), этого может оказаться недостаточно, чтобы убедить вас отказаться от любимых пирожных.

В политике точка принятия решения еще менее определенна. Как правило, общество смутно представляет, насколько хорошо нужно изучить вопрос, прежде чем менять законы или накладывать ограничения. Необходимые расчеты здесь осложнены множеством факторов. Как говорилось в предыдущей главе, из?за неоднозначности целей и методов провести сколько?нибудь достоверный анализ «затраты - прибыли» очень сложно, а иногда вообще невозможно.

Колумнист The New York Times Николас Кристоф, ратуя за осторожность в обращении с потенциально опасными химическими веществами типа бисфенол–А (ВРА) в пище или пищевой упаковке, писал: «Исследования ВРА уже несколько десятков лет бьют тревогу, а данные до сих пор сложны и неоднозначны. Такова жизнь: в реальном мире законодательные меры, как правило, приходится принимать на основании неоднозначных и спорных данных».

Ничто из сказанного не означает, что нам не следует, определяя политический курс, стремиться к количественной оценке затрат и выгод. Однако ясно, что нам нужно четко понимать, что означает каждая оценка, как сильно она может меняться в зависимости от начальных предположений или целей, а также что при расчетах было и что не было принято во внимание. Анализ «затраты - выгоды» может быть полезен, но может и дать ложное ощущение конкретности, надежности и безопасности, которое зачастую приводит к опрометчивым решениям.

К счастью для нас, физики, как правило, ставят перед собой вопросы попроще, чем те, что приходится решать публичным политикам. Имея дело с чистым знанием, которое в ближайшее время не предполагается использовать на практике, думаешь совершенно о другом. Измерения в мире элементарных частиц тоже намного проще, по крайней мере теоретически. Все электроны по природе своей одинаковы. Проводя измерения, приходится думать о статистической и системной погрешности, зато о неоднородности популяции можно спокойно забыть. Поведение одного электрона дает нам достоверную информацию о поведении всех электронов. Тем не менее представления о статистической и системной погрешности применимы и здесь.

Однако даже в «простых» физических системах необходимо заранее решить, какая точность нам необходима, ведь идеальных измерений не бывает. На практике вопрос сводится к тому, сколько раз экспериментатор должен повторить измерение и насколько прецизионный измерительный прибор при этом использовать. Решение за ним. Приемлемый уровень неопределенности определяется задаваемыми вопросами. Разные цели предполагают разные уровни прецизионности и точности.

К примеру, атомные часы измеряют время с точностью до одной десятитриллионной, но такое точное представление о времени мало кому нужно. Исключение - эксперименты по проверке теории гравитации Эйнштейна: в них лишней прецизионности и точности быть не может. До сих пор все тесты показывают, что эта теория работает, но измерения непрерывно совершенствуются. При более высокой точности могут проявиться невиданные до сих пор отклонения, представляющие новые физические эффекты, которые невозможно было заметить в ходе прежних, менее точных экспериментов. Если это произойдет, то замеченные отклонения позволят нам заглянуть в царство новых физических явлений. Если нет, придется сделать вывод о том, что теория Эйнштейна даже точнее, чем было установлено ранее. Мы будем знать, что ее можно уверенно применять в более широком диапазоне энергий и расстояний, к тому же с большей точностью.

Если же нам нужно «всего лишь» доставить человека на Луну, то мы, естественно, не обойдемся без знания физических законов, достаточного, чтобы не промахнуться, но привлекать общую теорию относительности не обязательно, и уж тем более не требуется принимать во внимание еще более мелкие потенциальные эффекты, представляющие возможные отклонения от нее.

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Из книги Достучаться до небес [Научный взгляд на устройство Вселенной] автора Рэндалл Лиза

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Измерения g на службе разведки Речь идет не о военной разведке. Там знание ускорения силы тяжести ни к чему. Речь идет о геологической разведке, цель которой – найти залежи полезных ископаемых под землей, не роя ям, не копая шахт.Существует несколько методов очень точного

Из книги автора

ИЗМЕРЕНИЯ И БАК Вероятностная природа квантовой механики не подразумевает, что мы, по сути, ничего не знаем. Более того, зачастую все обстоит как раз наоборот. Нам известно достаточно много. К примеру, магнитный момент электрона - это его неотъемлемая характеристика,

Из книги автора

ДОПОЛНИТЕЛЬНЫЕ ИЗМЕРЕНИЯ Ни суперсимметрия, ни техницвет не дают нам идеального решения проблемы иерархии. Суперсимметричные теории не предлагают нам экспериментально непротиворечивых механизмов нарушения суперсимметрии, а создать на основе техницветной силы

Лабораторная работа № 6

ИССЛЕДОВАНИЕ ОДНОФАЗНОГО ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ

Цель работы. Ознакомление с принципом работы, характеристиками и методами исследования однофазных трансформаторов.

Домашнее задание

    Поясните назначение трансформатора.

    Объясните устройство и принцип действия однофазного трансформатора.

    Как и с какой целью проводится опыт холостого хода трансформатора?

    Как и с какой целью проводится опыт короткого замыкания трансформатора?

    Запишите полую систему уравнений трансформатора.

    Дайте понятие электрической схемы замещения трансформатора, какие физические процессы, связанные с преобразованием электрической энергии в другие виды, учитывают ее элементы?

Краткие теоретические сведения

Трансформатор - статический электромагнитный аппарат, предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения той же частоты. Трансформатор состоит из стального сердечника, собранного из тонких листов электротехнической стали, изолированных друг от друга с целью снижения потерь мощности на гистерезис и вихревые токи.

На сердечнике однофазного трансформатора (рис. 1) в простейшем случае расположены две обмотки, выполненные из изолированного провода, содержащие различное число витков: первичная обмотка содержит витков, а вторичная обмотка -
витков.

К первичной обмотке подводится питающее напряжение . С вторичной его обмотки снимается напряжение
, которое подводится к потребителю электрической энергии.

Отношение напряжения
вторичной обмотки напряжения к напряжению
первичной обмотки называют коэффициентом трансформации по напряжению:

.

Отношение тока вторичной обмотки к токупервичной обмотки называют коэффициентом трансформации по току

.

Коэффициент передачи есть обратная величина коэффициенту трансформации, то есть коэффициент передачи по напряжению равен
, а коэффициент передачи по току
.

Во многих случаях трансформатор имеет не одну, а две или несколько вторичных обмоток, к каждой из которых подключается свой потребитель электроэнергии. Переменный ток, проходя по виткам первичной обмотки трансформатора, возбуждает в сердечнике магнитопровода переменный магнитный поток
. Изменяясь во времени по синусоидальному закону
, этот поток пронизывает витки как первичной, так и вторичной обмоток трансформатора. При этом в соответствии с законом электромагнитной индукции в обмотках будет наводиться ЭДС, мгновенные значения будут изменяться по синусоидальному закону:

,

где
и
- амплитудные значения ЭДС соответственно в первичной и вторичной обмотке.

Действующие значения ЭДС, наводимых соответственно в первичной и вторичной обмотке трансформатора, определяются по формулам:

,

Напряжение, подводимое в режиме холостого хода к трансформатору, в соответствии со вторым законом Кирхгофа для первичной обмотки, может быть представлено как сумма:

где =
- ток холостого хода трансформатора,
- комплексное сопротивление первичной обмотки, - ее активное сопротивление;
- ее индуктивное сопротивление, обусловленное потоками рассеяния
.

Ток во вторичной обмотке нагруженного трансформатора согласно закону Ома определяется выражением

В нагрузочном режиме трансформатора можно выделить три магнитных потока (рис.1): основной поток , сцепленный с витками первичной и вторичной обмоток, поток
рассеяния первичной обмотки и поток
рассеяния вторичной обмотки. ЭДС, индуктируемые в обмотках потоками
и
рассеяния, учитываются обычно при помощи соответственно индуктивных сопротивлений
и
рассеяния первичной и вторичной обмоток. Потоки
и
рассеяния обмоток пропорциональны соответ-ствующим токам в обмотках и совпадают с ними в фазе. Эти потоки рассеяния индуктируют в обмотках ЭДС
и
, отстающие по фазе от магнитных потоков, а следовательно, и токов и на угол .

ЭДС от магнитных потоков рассеяния уравновешиваются составляющими напряжения:

и
,

где
и
– комплексные сопротивления рассеяния обмоток;
и
– индуктивности рассеяния первичной и вторичной обмоток;
,
– потокосцепления рассеяния первичной и вторичной обмоток;
– угловая частота переменного тока. Составляющие напряжения
и
опережают токи и на угол .

В соответствии со вторым законом Кирхгофа для первичной и вторичной обмоток нагруженного трансформатора можно записать уравнения электрического состояния

,

,

где - ток первичной обмотки нагруженного трансформатора;

- комплексное полное сопротивление вторичной обмотки;

– активное сопротивление вторичной обмотки;

– индуктивное сопротивление вторичной обмотки, обусловленное потоками рассеяния
.

Падения напряжений
и
в обмотках трансформатора обычно не превышают 4-10 % от напряженийи
, поэтому можно считать, что в режиме нагрузки трансформатора сохраняются равенства
и
. Если напряжение на первичной обмотке
, то амплитуда магнитного потока будет постояннойпределах от холостого хода до номинальной нагрузки трансформатора, то есть

В режиме нагрузки выполняется уравнение равновесия намагничивающих сил обмоток трансформатора:

.

Исследование работы трансформатора при нагрузке удобно проводить на основе векторных диаграмм, построенных для приведенного трансформатора, заменяющего реальный трансформатор, у которого параметры вторичной обмотки приведены к числу витков первичной обмотки. В соответствии с этим приведенный трансформатор должен иметь коэффициент трансформации, равный единице
. В процессе определения параметров вторичной обмотки приведенного трансформатора все параметры первичной обмотки остаются неизменными. При замене реального трансформатора приведенным трансформатором активные, реактивные и полные мощности, а также коэффициент мощности вторичной обмотки трансформатора должны оставаться постоянными. Исходя из этого, расчетные соотношения для приведенного трансформатора имеют вид:



Через приведенные параметры трансформатора уравнение электрического равновесия вторичной обмотки имеет вид:

Из уравнения намагничивающих сил обмоток для приведенного трансформатора можно записать

.

Также как для катушки со стальным сердечником ЭДС , равную
, можно заменить векторной суммой активного и реактивного индуктивного падений напряжения

,

где
=
- активное сопротивление, обусловленное магнитными потерями мощности в магнитопроводе трансформатора в режиме холостого хода;
- индуктивное сопротивление, обусловленное основным магнитным потоком
трансформатора.

По уравнениям приведенного трансформатора можно составить схему замещения трансформатора (рис. 2) и построить векторную диаграмму. Векторная диаграмма трансформатора для случая активно-индуктивной нагрузки приведена на рис. 3.

Рис. 2 Рис. 3

При опыте холостого хода к первичной обмотке трансформатора подводится напряжение, равное номинальному его значению
. Вторичная обмотка трансформатора при этом разомкнута, так как в цепи ее отсутствует нагрузка. В результате этого ток во вторичной обмотке оказывается равным нулю, в то время как в цепи первичной обмотки трансформатора будет ток холостого хода
, значение которого невелико и составляет 4-10 % от номинального значения тока в первичной обмотке. При таком токе потерями в обмотках можно пренебречь и считать, что все потери трансформаторе являются магнитными потерями
в магнитопроводе, обусловленные действием вихревых токов и гистерезиса (перемагничивание стали).

Качественные рабочие характеристики трансформатора в нагрузочном режиме приведены на рис. 4.

Опыт короткого замыкания трансформатора проводится в процессе исследований трансформатора для определения электрических потерь мощности в проводах обмоток и параметров упрощенной схемы замещения трансформатора. Этот опыт проводится при пониженном напряжении на первичной обмотке, так чтобы при замкнутой накоротко вторичной обмотке ток во вторичной обмотке соответствовал номинальному значению
. При опыте короткого замыкания напряжение, подводимое к первичной обмотке, мало и равно. Отсюда следует, что магнитный поток
и магнитная индукция
трансформатора будут также малы. Как известно, магнитные потери в магнитопроводе пропорциональны квадрату магнитной индукции, поэтому в опыте короткого замыкания трансформатора ими можно пренебречь.

Рабочее задание

    Ознакомиться с приборами, аппаратами и оборудованием съемной панели (рис. 5) лабораторного стенда, используемого для испытания однофазного трансформатора, и занести в таблицу 1 номинальные технические данные исследуемого трансформатора.


Таблица 1

Номинальная мощность, ВА

Частота, Гц

Номинальное напряжение, В

Номинальный ток, А

Таблица 2

Режим работы

Установка коронок – метод коррекции зубного ряда. Однако встречаются ситуации, когда корректировать необходимо не только зубы, но и десны. Это обусловлено как эстетическими, так и техническими причинами: порой из-за неправильно формы десны врач не может надежно зафиксировать протез. Как происходит подрезание десны под коронку – читайте ниже.

Операция может быть назначена в следующих случаях:

  1. «Короткие зубы» по причине слишком широкой полосы десневой ткани.
  2. Неровная кромка, которая выглядит неэстетично.
  3. Зазор между десной и зубом (карман) слишком большой.
  4. Воспалительные процессы ( , гингивит), которые служат препятствием для фиксации коронки.
  5. Повреждение десневой ткани с риском распространения его на соседние области.

Существует ряд показаний к проведению операции.

В перечисленных случаях ткани необходимо удалять не только по эстетическим причинам, но и в связи с тем, что зазор между зубами и деснами – место, в котором скапливаются бактерии, способные привести к развитию воспалительных процессов.

Операция не проводится при наличии противопоказаний , к которым относятся:

  • декомпенсированный сахарный диабет;
  • заболевания крови;
  • сердечно-сосудистые болезни в стадии декомпенсации;
  • инфекционные заболевания в острой стадии;
  • иммунные патологии.

Кроме того, операция не показана в том случае, если воспаление уже затронуло костную ткань.

Как проводится подрезание?

Процедуру можно условно разделить на несколько этапов :

  1. Профессиональная чистка. Щель между коронкой и десной – место скопления бактерий, образования зубного камня и налета. Прежде чем приступать к операции, необходимо избавиться от них.
  2. Введение местной анестезии.
  3. Удаление тканей.
  4. Обработка поверхности антисептиком, накладывание повязки со специальным антибактериальным раствором.

Сама операция проводится под одной из следующих методик:

  • Простая. Врач измеряет глубину карманов и отмечает уровень вдоль всей линии десны. Затем делается надрез, и полоска десны иссекается.
  • Частичная. Этот метод схож с предыдущим, разница заключается лишь в том, что иссекается не вся ткань, а лишь ее часть на небольшом участке.
  • Радикальная, при которой удаляется не только десневая ткань, но и гранулированная, а также, в некоторых случаях, и измененная кость. В последнее время эта методика используется редко.

В качестве инструмента может быть использован как скальпель, так и лазер. Лазерные операции менее травматичные в связи с тем, что луч обеспечивает не только удаление тканей, но и коагуляцию. Кроме того, такие процедуры бесконтактные, а потому обеспечивается полная стерильность.

Подрезание при имплантации

Осложнения после процедуры развиваются редко.

При имплантации подрезание десен может проводиться на разных этапах процедуры:

  1. При подготовке к ней. Такая операция проводится, как правило, в том случае, если десневая ткань некротизирована вследствие воспалительных процессов и не подлежит восстановлению. От этой операции до установки импланта может пройти 2-3 недели.
  2. Во время имплантации, одновременно с манипуляциями по увеличению объема костной ткани.
  3. После имплантации, если линия десны неправильная.

Во всех этих случаях подрезание играет не только эстетическую роль. Очень важно защитить имплант от попадания инфекции и предотвратить развитие периимплантита, который может повлечь разрушение всей конструкции и .

Уход после операции

Восстановительный период занимает, как правило, не больше недели. Осложнения при этом развиваются очень редко, и обычно только в том случае, если хирург не был поставлен в известность о наличии противопоказаний или не учел их. Еще одна причина развития осложнений – невыполнение пациентом правил послеоперационного ухода, к которым относятся:

  • Полоскание антисептическими растворами, которые назначит врач.
  • Соблюдение диеты с отказом от твердой, жесткой, горячей, острой пищи.
  • Отказ от курения и алкоголя.
  • Ограничение жевательных нагрузок.
  • Соблюдение аккуратности при чистке зубов, исключение нажима и других механических воздействий.

Поскольку установка коронки может быть травматичной в связи со шлифовкой зуба, она проводится через несколько дней. Вне зависимости от того, какое требуется – под цельнолитую коронку или любую другую, к этому этапу протезирования врач приступает только после полного заживления прооперированной десны.

Источники:

  1. Робустова Т.Г. Хирургическая стоматология. Москва, 1996.
  2. Копейкин В.Н. Ортопедическая стоматология. Москва, 2001.