Расчет п компенсатора. Расчет тепловых расширений трубопроводов

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Расчет П-образных компенсаторов

к. т. н. С.Б. Горунович,

рук. конструкторской группы Усть-Илимской ТЭЦ

Для компенсации тепловых расширений наибольшее распространение в тепловых сетях и на электростанциях находят П-образные компенсаторы. Несмотря на свои многочисленные недостатки, среди которых можно выделить: сравнительно большие габариты (необходимость устройства компенсаторных ниш в теплосетях с канальной прокладкой), значительные гидравлические потери (по сравнению с сальниковыми и сильфонными); П-образные компенсаторы имеют и ряд достоинств.

Из достоинств можно прежде всего выделить простоту и надежность. Кроме того, этот тип компенсаторов наиболее хорошо изучен и описан в учебно-методической и справочной литературе. Несмотря на это, часто у молодых инженеров, не имеющих специализированных программ, расчет компенсаторов вызывает затруднения. Связано это прежде всего с достаточно сложной теорией, с наличием большого количества поправочных коэффициентов и, к сожалению, с наличием опечаток и неточностей в некоторых источниках.

Ниже проведен подробный анализ процедуры расчета П-образного компенсатора по двум основным источникам , , целью которого являлось выявление возможных опечаток и неточностей, а так же сравнение результатов.

Типовой расчет компенсаторов (рис.1, а)), предлагаемый большинством авторов ч, предполагает процедуру, в основе которой лежит использование теоремы Кастилиано:

где: U - потенциальная энергия деформации компенсатора, Е - модуль упругости материала трубы, J - осевой момент инерции сечения компенсатора (трубы),

где: s - толщина стенки отвода,

D н - внешний диаметр отвода;

М - изгибающий момент в сечении компенсатора. Здесь (из условия равновесия, рис.1 а)):

M = P y x - P x y + M 0 ; (2)

L - полная длина компенсатора, J x - осевой момент инерции компенсатора, J xy - центробежный момент инерции компенсатора, S x - статический момент компенсатора.

Для упрощения решения оси координат переносят в упругий цент тяжести (новые оси Xs , Ys ), тогда:

S x = 0, J xy = 0.

Из (1) получим силу упругого отпора P x :

Перемещение можно трактовать как компенсирующую способность компенсатора:

где: б t - коэффициент линейного температурного расширения, (1,2х10 -5 1/град для углеродистых сталей);

t н - начальная температура (средняя температура наиболее холодной пятидневки за последние 20 лет);

t к - конечная температура (максимальная температура теплоносителя);

L уч - длина компенсируемого участка.

Анализируя формулу (3), можно прийти к выводу, что наибольшее затруднение вызывает определение момента инерции J xs , тем более, что предварительно необходимо определиться с центром тяжести компенсатора (с y s ). Автор резонно предлагает использовать приближенный, графический метод определения J xs , при этом учитывая коэффициент жесткости (Кармана) k :

Первый интеграл определяем относительно оси y , второй относительно оси y s (рис.1). Ось компенсатора вычерчивается на милиметровой бумаге в масштабе. Вся кривая ось компенсатора L разбивается на множество отрезков Дs i . Расстояние от центра отрезка до оси y i измеряется линейкой.

Коэффициент жесткости (Кармана) призван отобразить экспериментально доказанный эффект местного сплющивания поперечного сечения отводов при изгибе, что увеличивает их компенсирующую способность. В нормативном документе коэффициент Кармана определяется по эмпирическим формулам, отличным от приведенных в , . Коэффициент жесткости k используется для определения приведенной длины L прД дугового элемента, которая всегда больше его фактической длины l г . В источнике коэффициент Кармана для гнутых отводов:

где: л - характеристика гиба.

Здесь: R - радиус отвода.

где: б - угол отвода (в градусах).

Для сварных и короткозагнутых штампованных отводов источник предлагает воспользоваться другими зависимостями для определения k :

где: h - характеристика гиба для сварных и штампованных отводов.

Здесь: R э - эквивалентный радиус сварного отвода.

Для отводов из трех и четырех секторов б=15 град, для прямоугольного двухсекторного отвода предлагается принять б = 11 град.

Следует отметить, что в , коэффициент k ? 1.

Нормативный документ РД 10-400-01 предусматривает следующую процедуру определения коэффициента гибкости К р * :

где К р - коэффициент гибкости без учета стесненности деформации концов изогнутого участка трубопровода; о - коэффициент, учитывающий стесненность деформации на концах изогнутого участка.

При этом если, то коэффициент гибкости принимают равным 1,0.

Величина К p определяется по формуле:

Здесь P - избыточное внутреннее давление, МПа; E t - модуль упругости материала при рабочей температуре, МПа.

Можно доказать, что по коэффициент гибкости К р * будет больше единицы, следовательно, при определении приведенной длины отвода по (7) необходимо брать его обратную величину.

Для сравнения определим гибкость некоторых стандартных отводов по ОСТ 34-42-699-85, при избыточном давлении Р =2,2 МПа и модуле Е t =2х 10 5 МПа. Результаты сведем в таблицу ниже (табл. №1).

Анализируя полученные результаты, можно сделать вывод, что процедура определения коэффициента гибкости по РД 10-400-01 дает более "строгий" результат (меньшую гибкость отвода), при этом дополнительно учитывает избыточное давление в трубопроводе и модуль упругости материала.

Момент инерции П-образного компенсатора (рис.1 б)) относительно новой оси y s J xs определяем следующим образом :

где: L пр - приведенная длина оси компенсатора,

y s - координата центра тяжести компенсатора:

Максимальный изгибающий момент М макс (действует вверху компенсатора):

где Н - вылет компенсатора, согласно рис.1 б):

Н=(m + 2)R .

Максимальное напряжение в сечении стенки трубы определяется по формуле:

где: m 1 - коррекционный коэффициент (коэффициент запаса), учитывающий увеличение напряжений на гнутых участках.

Для гнутых отводов, (17)

Для сварных отводов. (18)

W - момент сопротивления сечения отвода:

Допускаемое напряжение (160 МПа для компенсаторов из сталей 10Г 2С, Ст 3сп; 120 МПа для сталей 10, 20, Ст 2сп).

Хочется сразу отметить, что коэффициент запаса (коррекционный) довольно высок и растет с увеличением диаметра трубопровода. Например для отвода 90° - 159x6 ОСТ 34-42-699-85 m 1 ? 2,6; для отвода 90° - 630x12 ОСТ 34-42-699-85 m 1 = 4,125.

Рис.2. Расчетная схема компенсатора по РД 10-400-01.

В руководящем документе расчет участка с П-образным компенсатором, см. рис.2, производится по итерационной процедуре:

Здесь задаются расстояния от оси компенсатора до неподвижных опор L 1 и L 2 спинка В и определяется вылет Н. В процессе итераций в обоих уравнениях следует добиваться, чтобы стало равным; из пары значений берется наибольшее = l 2 . Затем определяется искомый вылет компенсатора Н:

В уравнениях представлены геометрические компоненты, см. рис.2:

Компоненты сил упругого отпора, 1/м 2:

Моменты инерции относительно центральных осей x, y.

Параметр прочности A, м :

[у ск ] - допускаемое компенсационное напряжение,

Допускаемое компенсационное напряжение [у ск ] для трубопроводов, расположенных в горизонтальной плоскости определяется по формуле:

для трубопроводов, расположенных в вертикальной плоскости по формуле:

где: - номинальное допускаемое напряжение при рабочей температуре (для стали 10Г 2С - 165 МПа при 100°?t?200°, для стали 20 - 140 МПа при 100°?t?200°).

D - внутренний диаметр,

Хочется отметить, что авторам не удалось избежать опечаток и неточностей. Если использовать коэффициент гибкости К р * (9) в формулах для определения приведенной длины l пр (25), координат центральных осей и моментов инерции (26), (27), (29), (30), то получится заниженный (некорректный) результат, так, как коэффициент гибкости К р * по (9) больше единицы и должен на длину гнутых отводов умножаться. Приведенная длина гнутых отводов всегда больше их фактической длины (по (7)), только тогда они обретут дополнительную гибкость и компенсационную способность.

Следовательно, чтобы скорректировать процедуру определения геометрических характеристик по (25) ч (30) необходимо использовать обратную величину К р *:

К р *=1/ К р *.

В расчетной схеме рис.2 опоры компенсатора - неподвижные ("крестиками" принято обозначать неподвижные опоры (ГОСТ 21.205-93)). Это может подвигнуть "расчетчика" отсчитывать расстояния L 1 , L 2 от неподвижных опор, то есть учитывать длину всего компенсационного участка. На практике поперечные перемещения скользящих, (подвижных) опор соседнего участка трубопровода часто ограничены; от этих подвижных, но ограниченных по поперечному перемещению опор и следует отсчитывать расстояния L 1 , L 2 . Если не ограничивать поперечные перемещения трубопровода по всей длине от неподвижной до неподвижной опоры возникает опасность схода с опор участков трубопровода, ближайших к компенсатору. Для иллюстрации данного факта на рис.3 приведены результаты расчета на температурную компенсацию участка магистрального трубопровода Ду 800 из стали 17Г 2С длиной 200 м, перепад температур от - 46 С° до 180 С° в программе MSC Nastran. Максимальное поперечное перемещение центральной точки компенсатора - 1,645 м. Дополнительную опасность схода с опор трубопровода представляют также возможные гидроудары. Поэтому решение о длинах L 1 , L 2 следует принимать с осторожностью.

Рис.3. Результаты расчета компенсационных напряжений на участке трубопровода Ду 800 с П-образным компенсатором программным комплексом MSC/Nastran (МПа).

Не совсем понятно происхождение первого уравнения в (20). Тем более, что по размерности оно не является корректным. Ведь в скобках под знаком модуля складываются величины Р х и P y (l 4 +…) .

Корректность второго уравнения в (20) можно доказать следующим образом:

для того, чтобы, необходимо, чтобы:

Это действительно так, если положить

Для частного случая L 1 =L 2 , Р y =0 , используя (3), (4), (15), (19), можно прийти к (36). Важно учесть, что в системе обозначений в y = y s .

Для практических расчетов я бы использовал второе уравнение в (20) в более привычной и удобной форме:

где А 1 =А[у ск ].

В частном случае когда L 1 =L 2 , Р y =0 (симметричный компенсатор):

Очевидными достоинствами методики по сравнению с является ее большая универсальность. Компенсатор рис.2 может быть несимметричным; нормативность позволяет проводить расчеты компенсаторов не только теплосетей, но и ответственных трубопроводов высокого давления, находящихся в реестре РосТехНадзора.

Проведем сравнительный анализ результатов расчета П-образных компенсаторов по методикам , . Зададимся следующими исходными данными:

а) для всех компенсаторов: материал - Сталь 20; Р=2,0 МПа; Е t =2х 10 5 МПа; t?200°; нагружение - предварительная растяжка; отводы гнутые по ОСТ 34-42-699-85; компенсаторы расположены горизонтально, из труб с мех. обработкой;

б) расчетная схема с геометрическими обозначениями по рис.4;

Рис.4. Расчетная схема к сравнительному анализу.

в) типоразмеры компенсаторов сведем в таблицу №2 вместе с результатами расчетов.

Отводы и трубы компенсатора, D н Ч s, мм

Типоразмер, см. рис.4

Предварительная растяжка, м

Максимальное напряжение, МПа

Допускаемое напряжение, МПа

cогласно

cогласно

cогласно

cогласно

Выводы

компенсатор тепловой трубопровод напряжение

Анализируя результаты расчетов по двум разным методикам: справочной - и нормативной - , можно прийти к выводу, что не смотря на то, что обе методики основываются на одной и той же теории, разница в результатах весьма значительная. Выбранные типоразмеры компенсаторов "проходят с запасом" если рассчитываются по и не проходят по допускаемым напряжениям, если рассчитываются по . Наиболее существенное влияние на результат по производит коррекционный коэффициент m 1 , который увеличивает рассчитанное по формуле напряжение в 2 и более раз. Например, для компенсатора в последней строчке табл.№2 (из трубы 530Ч12) коэффициент m 1 ? 4,2.

Оказывает влияние на результат и величина допускаемого напряжения, которая по для стали 20 существенно ниже.

В целом, не смотря на большую простоту, что связано с наличием меньшего количества коэффициентов и формул, методика оказывается значительно более строгой, особенно в части трубопроводов большого диаметра.

В практических целях при расчете П-образных компенсаторов для теплосетей, я бы рекомендовал "смешанную" тактику. Коэффициент гибкости (Кармана) и допускаемое напряжение следует определять по нормативу , т. е: k=1/ К р * и далее по формулам (9)ч(11); [у ск ] - по формулам (34), (35) с учетом РД 10-249-88. "Тело" методики следует использовать по , но без учета коррекционного коэффициента m 1 , т. е:

где М макс определять по (15) ч (12).

Возможной ассиметрией компенсатора, что учитывается в можно пренебречь, т. к. на практике при прокладке теплосетей подвижные опоры устанавливаются достаточно часто, ассиметрия носит случайный характер и значительное влияние на результат по не оказывает.

Расстояние b можно отсчитывать не от ближайших соседних скользящих опор, а принять решение об ограничении поперечных перемещений уже на второй или на третьей скользящей опоре, если отсчитывать от оси компенсатора.

Используя данную "тактику" расчетчик "убивает сразу двух зайцев": а) строго следует нормативной документации, т. к. "тело" методики есть частный случай . Доказательство приведено выше; б) упрощает расчет.

К этому можно добавить немаловажный фактор экономии: ведь чтобы подобрать компенсатор из трубы 530Ч12, см. табл. №2, по справочнику, расчетчику будет необходимо будет увеличить его габариты как минимум в 2 раза, согласно же действующему нормативу настоящий компенсатор можно еще и уменьшить в полтора раза.

Литература

1. Елизаров Д.П. Теплоэнергетические установки электростанций. - М.: Энергоиздат, 1982.

2. Водяные тепловые сети: Справочное пособие по проектированию/ И.В. Беляйкина, В.П. Витальев, Н.К. Громов и др., Под ред. Н.К. Громова, Е.П. Шубина. - М.: Энергоатомиздат, 1988.

3. Соколов Е.Я. Теплофикация и тепловые сети. - М.: Энергоиздат, 1982.

4. Нормы расчета на прочность трубопроводов тепловых сетей (РД 10-400-01).

5. Нормы расчета на прочность стационарных котлов и трубопроводов пара и горячей воды (РД 10-249-98).

Размещено на Allbest.ru

...

Подобные документы

    Расчет затрат тепла на отопление, вентиляцию и горячее водоснабжение. Определение диаметра трубопровода, числа компенсаторов, потерь напора в местных сопротивлениях, потерь напора по длине трубопровода. Выбор толщины теплоизоляции теплопровода.

    контрольная работа , добавлен 25.01.2013

    Определение величин тепловых нагрузок района и годового расхода теплоты. Выбор тепловой мощности источника. Гидравлический расчет тепловой сети, подбор сетевых и подпиточных насосов. Расчет тепловых потерь, паровой сети, компенсаторов и усилий на опоры.

    курсовая работа , добавлен 11.07.2012

    Способы компенсации реактивной мощности в электрических сетях. Применение батарей статических конденсаторов. Автоматические регуляторы знакопеременного возбуждения синхронных компенсаторов с поперечной обмоткой ротора. Программирование интерфейса СК.

    дипломная работа , добавлен 09.03.2012

    Основные принципы компенсации реактивной мощности. Оценка влияния преобразовательных установок на сети промышленного электроснабжения. Разработка алгоритма функционирования, структурной и принципиальной схем тиристорных компенсаторов реактивной мощности.

    дипломная работа , добавлен 24.11.2010

    Определение тепловых потоков на отопление, вентиляцию и горячее водоснабжение. Построение температурного графика регулирования тепловой нагрузки на отопление. Расчёт компенсаторов и тепловой изоляции, магистральных теплопроводов двухтрубной водяной сети.

    курсовая работа , добавлен 22.10.2013

    Расчет простого трубопровода, методика применения уравнения Бернулли. Определение диаметра трубопровода. Кавитационный расчет всасывающей линии. Определение максимальной высоты подъема и максимального расхода жидкости. Схема центробежного насоса.

    презентация , добавлен 29.01.2014

    Конструкторский расчет вертикального подогревателя низкого давления с пучком U–образных латунных труб диаметром d=160,75 мм. Определение поверхности теплообмена и геометрических параметров пучка. Гидравлическое сопротивление внутритрубного тракта.

    контрольная работа , добавлен 18.08.2013

    Максимальный расход через гидравлическую трассу. Значения кинематической вязкости, эквивалентной шероховатости и площади проходного сечения труб. Предварительная оценка режима движения жидкости на входном участке трубопровода. Расчет коэффициентов трения.

    курсовая работа , добавлен 26.08.2012

    Применение в системах электроснабжения устройств автоматики энергосистем: синхронных компенсаторов и электродвигателей, регуляторов частоты вращения. Расчет токов короткого замыкания; защиты питающей линии электропередач, трансформаторов и двигателей.

    курсовая работа , добавлен 23.11.2012

    Определение наружного диаметра изоляции стального трубопровода с установленной температурой внешней поверхности, температуры линейного коэффициента теплопередачи от воды к воздуху; потери теплоты с 1 м трубопровода. Анализ пригодности изоляции.

Программа предназначена для быстрой оценки компенсирующей способности отдельных участков трубопроводной трассы, проверки толщины стенки, расчета расстояний между опорами. Рассчитываются трубопроводы надземной, канальной и бесканальной (в грунте) прокладки.

Начните прямо сейчас

Начать работу с программой очень просто.

Для работы в системе необходимо зарегистрироваться с помощью адреса своей электронной почты. После подтверждения адреса вы сможете с ним входить в систему.

Ваши данные хранятся на сервере и доступны вам в любое время. Обмен с сервером производится по защищенному протоколу.

Расчеты производятся на сервере, скорость их выполнения не зависит от производительности вашего устройства.

Расчетное ядро

Для расчетов используется ядро программного комплекса СТАРТ.

Расчетное ядро обновляется одновременно с выпусками новых версий СТАРТ.

С помощью StartExpress можно определить:

  • компенсирующую способность поворотов Г-, Z-образной формы и П-образных компенсаторов при прокладке трубопроводов над землей и в подземных каналах;
  • компенсирующую способность поворотов Г-, Z-образной формы и П-образных компенсаторов при бесканальной прокладке трубопроводов в грунте;
  • толщину стенки или предельное давление для труб согласно выбранному нормативному документу;
  • расстояния между промежуточными опорами трубопровода из условий прочности и жесткости;

Расчет поворотов Г-, Z-образной формы и П-образных компенсаторов при прокладке трубопроводов над землей и в подземных каналах осуществляется для участков, расположенных между двумя неподвижными (мертвыми) опорами. При известном расстоянии между неподвижными опорами определяется требуемый вылет для П-образного компенсатора, Z-образного поворота и короткое плечо для Г-образного поворота, исходя из допускаемых компенсационных напряжений. Это избавляет проектировщиков от необходимости пользоваться устаревшими номограммами для Г-, Z- и П-образных участков.

Расчет поворотов Г-, Z-образной формы и П-образных компенсаторов при бесканальной прокладке трубопроводов в грунте позволяет по заданному вылету для П-образного компенсатора или Z-образного поворота и длине короткого плеча Г-образного поворота определить допустимое расстояние между неподвижными опорами, то есть ту длину участка защемленного в грунте трубопровода, которая может быть скомпенсирована при заданном температурном перепаде. Рассматриваются П-образные компенсаторы и повороты Г-, Z-образной формы с произвольными углами. Для тех же трубопроводных участков можно выполнить проверочный расчет – при заданных габаритах определить напряжения, перемещения и нагрузки на неподвижные опоры.

В настоящий момент пользователю доступны два вида элементов:

  • Прямые участки трубопровода. Поверочный расчет и подбор толщины стенки, расчет длины пролетов.
  • Трубные компенсаторы различной конфигурации (Г,Z,П-образные) и расположения (вертикальный и горизонтальный наземной прокладки, подземной канальной прокладки, подземной в грунте). Поверочный расчет и подбор параметров компенсатора.

Нормативные документы, в соответствии с которыми производится расчет:

  • РД 10-249-98 - Трубопроводы пара и горячей воды
  • ГОСТ 55596-2013 - Тепловые сети
  • CJJ/T 81-2013 - Тепловые сети (стандарт КНР)
  • СНИП 2-05.06-85 - Магистральные трубопроводы
  • СП 36.13330.2012 - Магистральные трубопроводы
  • ГОСТ 32388-2013 - Технологические трубопроводы

Интерфейс пользователя

Адаптивный дизайн автоматически учитывает текущие размеры и ориентацию экрана.

Приложение оптимизировано для работы на различных устройствах - от настольного компьютера до смартфона.

Всегда под рукой, всегда последняя версия

Для работы достаточно иметь соединение с Интернет.

Ваши данные и результаты расчетов хранятся на сервере, и вы можете иметь к ним доступ везде, где бы вы ни находились.

Новые версии выходят для всех типов устройств одновременно.

Высокая скорость расчета

Скорость расчета не зависит от производительности вашего устройства.

Все расчеты выполняются на серверах, оснащенных самой последней версией ядра СТАРТ.

Число процессоров, задействованных для расчетов, изменяется динамически в зависимости от нагрузки.

Компенсаторы тепловых сетей. В данной статье речь пойдет о выборе и расчете компенсаторов тепловых сетей.

Для чего же нужны компенсаторы. Начнем с того, что при нагревании любой материал расширяется, а, значит трубопроводы тепловых сетей, удлиняются при повышении температуры теплоносителя проходящего в них. Для безаварийной работы тепловой сети используются компенсаторы, которые компенсируют удлинение трубопроводов при их сжатии и растяжении, во избежание защемления трубопроводов и их последующей разгерметизации.

Стоит отметить, что для возможности расширения и сжатия трубопроводов проектируются не только компенсаторы, но и система опор, которые, в свою очередь, могут быть как "скользящими" так и "мертвыми". Как правило,в России регулирование тепловой нагрузки качественное - то есть, при изменении температуры окружающей среды, температура на выходе из источника теплоснабжения изменяется. За счет качественного регулирования подачи тепла - количество циклов расширения- сжатия трубопроводов увеличивается. Ресурс трубопроводов снижается, опасность защемления - возрастает. Количественное регулирование нагрузки заключается в следующем - температура на выходе из источника теплоснабжения постоянна. При необходимости изменения тепловой нагрузки - изменяется расход теплоносителя. В этом случае, металл трубопроводов тепловой сети работает в более легких условиях, циклов расширения- сжатия минимальное количество, тем самым увеличивается ресурс трубопроводов тепловой сети. Следовательно, прежде чем выбирать компенсаторы, их характеристики и количество нужно определиться с величиной расширения трубопровода.

Формула 1:

δL=L1*a*(T2-T1)где

δL - величина удлинения трубопровода,

мL1 - длина прямого участка трубопровода (расстояние между неподвижными опорами),

мa - коэффициент линейного расширения (для железа равен 0,000012), м/град.

Т1 - максимальная температура трубопровода (принимается максимальная температура теплоносителя),

Т2 - минимальная температура трубопровода (можно принять минимальная температура окружающей среды), °С

Для примера рассмотрим решение элементарной задачи по определению величины удлинения трубопровода.

Задача 1. Определить на сколько увеличится длина прямого участка трубопровода длиной 150 метров, при условии что температура теплоносителя 150 °С, а температура окружающей среды в отопительный период -40 °С.

δL=L1*a*(T2-T1)=150*0,000012*(150-(-40))=150*0,000012*190=150*0,00228=0,342 метра

Ответ: на 0,342 метра увеличится длина трубопровода.

После определения величины удлинения, следует четко понимать когда нужен а когда не нужен компенсатор. Для однозначного ответа на данный вопрос нужно иметь четкую схему трубопровода, с ее линейными размерами и нанесенными на нее опорами. Следует четко понимать, изменение направления трубопровода способно компенсировать удлинения, другими словами поворот с габаритными размерами не менее размеров компенсатора, при правильной расстановке опор, способен компенсировать тоже удлинение,что и компенсатор.

И так, после того, как мы определии величину удлинения трубопровода можно переходить к подбору компенсаторов, необходимо знать, что каждый компенсатор имеет основную характеристику - это величину компенсации. Фактически выбор количества компенсаторов сводится к выбору типа и конструктивных особенностей компенсаторов.Для выбора типа компенсатора необходимо определить диаметр трубы тепловой сети исходя из пропускной способности труби необходимой мощности потребителя тепла.

Таблица 1. Соотношение П- образных компенсаторов изготовленных из отводов.

Таблица 2. Выбор количества П- образных компенсаторов из расчета их компенсирующей способности.


Задача 2 Определение количества и размеры компенсаторов.

Для трубопровода диаметром Ду 100 с длиной прямого участка 150 метров, при условии, что температура носителя 150 °С, а температура окружающей среды в отопительный период -40 °С определить количество компенсаторов.бL=0,342 м (см. Задача 1).По Таблице 1 и Таблице 2 определяемся с размерами п образных компенсаторов (с размерами 2х2 м может компенсировать 0,134 метра удлинения трубопровода) , нам нужно компенсировать 0,342 метра, следовательно Nкомп=бL/∂х=0,342/0,134=2,55 , округляем до ближайшего целого числа в сторону увеличения и того - требуется 3 компенсатора размерами 2х4 метра.

В настоящее время все большее распространение получают линзовые компенсаторы, они значительно компактнее п - образных, однако, ряд ограничений не всегда позволяет их использование. Ресурс п- образного компенсатора значительно выше чем линзового, из-за плохого качество теплоносителя. Нижняя часть линзового компенсатора как правило "забивается" шламом, что способствует развитию стояночной коррозии металла компенсатора.

На сегодняшний день применение компенсаторов П-образного типа или любого другого осуществляется в том случае, если вещество, проходящее через трубопровод, характеризуется температурой 200 градусов по Цельсию или выше, а также высоким давлением.

Общее описание компенсаторов

Металлические компенсаторы - это устройства, которые предназначены для того, чтобы скомпенсировать либо уравновесить влияние разнообразных факторов на работу трубопроводных систем. Другими словами, основное предназначение этого изделия - это обеспечить отсутствие повреждений трубы при транспортировке веществ по ней. Такие сети, обеспечивающие транспортировку рабочей среды, практически постоянно подвергаются таким негативным влияниям, как температурное расширение и давление, вибрации, а также оседание фундамента.

Именно для того, чтобы устранить эти дефекты, необходимо устанавливать гибкие элементы, которые стали называть компенсаторами. П-образный тип - это лишь один из многих видов, который применяется в этих целях.

Что представляют собой П-образные элементы

Сразу стоит отметить, что П-образный тип деталей - это наиболее простой вариант, который помогает решить проблему компенсации. Эта категория устройств имеет наиболее широкий диапазон применения по температурным показателям, а также по показателям давления. Для изготовления П-образных компенсаторов используется либо одна длинная труба, которую сгибают в нужных местах, либо прибегают к свариванию нескольких гнутых, крутоизогнутых или сварных отводов. Тут стоит отметить, что некоторые из трубопроводов необходимо периодически разбирать для очистки. Для таких случаев компенсаторы этого типа изготавливаются с присоединительными концами на фланцах.

Так как компенсатор П-образного типа является наиболее простой конструкцией, он имеет ряд определенных недостатков. К ним можно отнести большой расход труб для создания элемента, большие габариты, необходимость в монтаже дополнительных опор, а также наличие сварных соединений.

Требования компенсаторов и стоимость

Если рассматривать установку компенсаторов П-образного типа с точки зрения материальных средств, то наиболее невыгодным будет их монтаж в системах, имеющих большой диаметр. Расход труб и материальных средств на создание компенсатора будет слишком велик. Здесь можно сравнить данное оборудование с Действие и параметры этих элементов примерно одинаковые, а вот стоимость монтажа у П-образного примерно в два раза больше. Основная причина такого расхода денежных средств в том, что необходимо множество материалов для постройки, а также монтаж дополнительных опор.

Для того чтобы П-образный компенсатор смог полностью нейтрализовать давление на трубопровод, откуда бы оно ни исходило, необходимо монтировать такие приспособления в одной точке с разницей в 15-30 градусов. Данные параметры подходят лишь в том случае, если температура рабочего вещества внутри сети не будет превышать 180 градусов по Цельсию и не будет опускаться ниже 0. Только в этом случае и при таком монтаже устройство сможет компенсировать напряжение на трубопровод от подвижек грунта с любой точки.

Расчеты для установки

Расчет П-образного компенсатора заключается в том, чтобы выяснить, каких минимальных размеров устройства хватит на то, чтобы скомпенсировать давление на трубопровод. Для того чтобы проводить расчет, используют определенные программы, однако эту операцию можно выполнить даже через онлайн-приложения. Здесь главное - придерживаться определенных рекомендаций.

  • Максимальное напряжение, которое рекомендуется принимать для спинки компенсатора, находится в пределах от 80 до 110 МПа.
  • Также имеется такой показатель, как вылет компенсатора к наружному диаметру. Данный параметр рекомендуется принимать в пределах H/Dn=(10 - 40). При таких значениях необходимо учитывать, что 10Dn будет соответствовать трубопроводу с показателем 350DN, а 40Dn - трубопроводу с параметрами 15DN.
  • Также при расчете П-образного компенсатора необходимо учитывать ширину устройства к его вылету. Оптимальными значениями считаются L/H=(1 - 1,5). Однако здесь допускается введение и других числовых параметров.
  • Если при проведении расчета выходит так, что для данного трубопровода необходимо создавать слишком большой компенсатор этого типа, то рекомендуется подобрать другой вид устройства.

Ограничения при расчетах

Если расчеты проводит не опытный специалист, то лучше ознакомиться с некоторыми ограничениями, которые нельзя превышать при вычислениях или введении данных в программу. Для П-образного компенсатора из труб имеются следующие ограничения:

  • Рабочее вещество может быть либо водой, либо паром.
  • Сам по себе трубопровод должен быть выполнен только из стальной трубы.
  • Максимальный температурный показатель для рабочей среды - 200 градусов по Цельсию.
  • Максимальное давление, которое наблюдается в сети, не должно превышать 1,6 МПа (16 бар).
  • Установка компенсатора может осуществляться лишь на горизонтальный тип трубопровода.
  • Размеры П-образного компенсатора должны быть симметричными, а его плечи одинаковыми.
  • Сеть трубопровода не должна испытывать дополнительных нагрузок (ветровых или любых других).

Установка устройств

Во-первых, располагать неподвижные опоры далее чем на 10DN от самого компенсатора не рекомендуется. Это обусловлено тем, что передача момента защемления опоры будет сильно снижать гибкость конструкции.

Во-вторых, настоятельно рекомендуется разбивать участки от неподвижной опоры до П-образного компенсатора одинаковой длины, на протяжении всей сети. Также здесь важно отметить, что смещение места установки приспособления от центра трубопровода к одному из его краев увеличит силу упругой деформации, а также напряжения примерно на 20-40% от тех значений, которые можно получить, если монтировать конструкцию посредине.

В-третьих, для того чтобы сильнее увеличить компенсирующую способность, используется растяжка П-образных компенсаторов. В момент установки конструкция будет испытывать изгибающуюся нагрузку, а при нагреве будет принимать ненапряженное состояние. Когда температура достигнет максимального значения, то и устройство придет снова в напряжение. На основе этого, был предложен способ растягивания. Предварительная работа заключается в том, чтобы растянуть компенсатор на величину, которая будет равна половине теплового удлинения трубопровода.

Плюсы и минусы конструкции

Если говорить в общем об этой конструкции, то можно с уверенностью сказать, что она обладает такими положительными качествами, как простота в производстве, высокая способность компенсации, отсутствие необходимости в обслуживании, усилия, которые передаются на опоры, незначительные. Однако среди явных недостатков выделяются следующие: большой расход материала и большое количество пространства, занимаемого конструкцией, высокий показатель гидравлического сопротивления.

Расчет компенсаторов

Неподвижное закрепление трубопроводов производят для предупреждения самопроизвольного его смещения при удлинениях. Но при отсутствии устройств, воспринимающих удлинения трубопроводов между неподвижными закреплениями, возникают большие напряжения, способные деформировать и разрушать трубы. Компенсация удлинений труб производится различными устройствами, принцип действия которых можно разделить на две группы: 1) радиальные или гибкие устройства, воспринимающие удлинения теплопроводов изгибом (плоских) или кручением (пространственных) криволинейных участков труб или изгибом специальных эластичных вставок различной формы; 2) осевые устройства скользящего и упругого типов, в которых удлинения воспринимаются телескопическим перемещением труб или сжатием пружинящих вставок.

Гибкие компенсирующие устройства самые распространенные. Наиболее простая компенсация достигается естественной гибкостью поворотов самого трубопровода, изогнутого под углом не более 150°.

Для естественной компенсации могут быть использованы подъемы и опуски труб, но естественная компенсация не всегда может быть предусмотрена. К устройству искусственных компенсаторов следует обращаться лишь после использования всех возможностей естественной компенсации.

На прямолинейных участках компенсация удлинений труб решается специальными гибкими компенсаторами различной конфигурации. Лирообразные компенсаторы, особенно со складками, из всех гибких компенсаторов обладают наибольшей эластичностью, но вследствие усиленной коррозии металла в складках и повышенного гидравлического сопротивления применяются редко. Более распространены П-образные компенсаторы со сварными и гладкими коленами; П-образные компенсаторы со складками, как и лирообразные, по указанным выше причинам применяются реже.

Достоинством гибких компенсаторов является то, что они не нуждаются в обслуживании и для их укладки в нишах не требуется сооружение камер. Кроме того, гибкие компенсаторы передают на неподвижные опоры только реакции распоров. К недостаткам гибких компенсаторов относятся: повышенное гидравлическое сопротивление, увеличенный расход труб, большие габариты, затрудняющие их применение в городских прокладках при насыщенности трассы городскими подземными коммуникациями.

Линзовые компенсаторы относятся к осевым компенсаторам упругого типа. Компенсатор собирается на сварке из полулинз, изготовленных штамповкой из тонколистовых высокопрочных сталей. Компенсирующая способность одной полулинзы составляет 5--6 мм. В конструкции компенсатора допускается объединять 3--4 линзы, большее число нежелательно из-за потери упругости и выпучивания линз. Каждая линза допускает угловое перемещение труб до 2--3°, поэтому линзовые компенсаторы можно использовать при прокладке сетей на подвесных опорах, создающих большие перекосы труб.

Осевая компенсация скользящего типа создается сальниковыми компенсаторами. К настоящему времени устаревшие чугунные литые конструкции на фланцевых соединениях повсеместно вытеснены легкой, прочной и простой в изготовлении стальной сварной конструкцией, показанной на рисунке 5.2.

Рисунок 5.2. Бесфланцевый односторонний сварной сальниковый компенсатор: 1- нажимной фланец; 2 - грундбукса; 3 - сальниковая набивка; 4- контрбукса; 5 - стакан; 6 - корпус; 7 - переход диаметров

Компенсация температурных удлинителей трубопроводов назначается при средней температуре теплоносителя более +50°С. Тепловые перемещения теплопроводов обусловлены линейным удлинением труб при нагревании.

Для безаварийной работы тепловых сетей необходимо, чтобы компенсирующие устройства были рассчитаны на максимальные удлинения трубопроводов. Исходя из этого при расчете удлинений температура теплоносителя принимается максимальной, а температура окружающей среды -- минимальной и равной: 1) расчетной температуре наружного воздуха при проектировании отопления -- для надземной прокладки сетей на открытом воздухе; 2) расчетной температуре воздуха в канале -- для канальной прокладки сетей; 3) температуре грунта на глубине заложения бесканальных теплопроводов при расчетной температуре наружного воздуха для проектирования отопления.

Проведем расчет П-образного компенсатора, который расположен между двумя неподвижными опорами, на участке 2 тепловой сети с длиной 62,5 м и диаметрами трубы: 194х5 мм.

Рисунок 5.3 схема П-образного компенсатора

Определим тепловое удлинение трубопровода по формуле:

где б - коэффициент линейного удлинения стальных труб принимается в зависимости от температуры, в среднем б =1,2?10 -5 м/?С; t - температура теплоносителя, ?С; t 0 = -28 ?С - температура окружающей среды.

С учетом предварительно растяжки по полному удлинению на 50%:

Графическим методом зная тепловое удлинение, диаметр трубы определяем по номограмме длину плеча П-образного компенсатора, которая равняется 2,4 м.