Методы разложения рациональных дробей на простейшие. Сокращение алгебраических дробей

Очень часто числитель и знаменатель дроби представляют собой алгебраические выражения, которые сначала нужно разложить на множители, а потом, обнаружив среди них одинаковые, разделить на них и числитель, и знаменатель, то есть сократить дробь. Заданиям разложить многочлен на множители посвящена целая глава учебника по алгебре в 7-м классе. Разложение на множители можно осуществить 3 способами , а также комбинацией этих способов.

1. Применение формул сокращенного умножения

Как известно, чтобы умножить многочлен на многочлен , нужно каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена и полученные произведения сложить. Есть, как минимум, 7 (семь) часто встречающихся случаев умножения многочленов, которые вошли в понятие . Например,

Таблица 1. Разложение на множители 1-м способом

2. Вынесение общего множителя за скобку

Этот способ основан на применении распределительного закона умножения. Например,

Каждое слагаемое исходного выражения мы делим на множитель, который выносим, и получаем при этом выражение в скобках (то есть в скобках остаётся результат деления того, что было, на то, что выносим). Прежде всего нужно правильно определить множитель , который надо вынести за скобку.

Общим множителем может быть и многочлен в скобках:

При выполнении задания «разложите на множители» надо быть особенно внимательным со знаками при вынесении общего множителя за скобки. Чтобы поменять знак у каждого слагаемого в скобке (b — a) , вынесем за скобку общий множитель -1 , при этом каждое слагаемое в скобке разделится на -1: (b — a) = — (a — b) .

В том случае если выражение в скобках возводится в квадрат (или в любую чётную степень), то числа внутри скобок можно менять местами совершенно свободно, так как вынесенные за скобки минусы при умножении всё равно превратятся в плюс: (b — a) 2 = (a — b) 2 , (b — a) 4 = (a — b) 4 и так далее…

3. Способ группировки

Иногда общий множитель имеется не у всех слагаемых в выражении, а только у некоторых. Тогда можно попробовать сгруппировать слагаемые в скобки так, чтобы из каждой можно было какой-то множитель вынести. Способ группировки - это двойное вынесение общих множителей за скобки.

4. Использование сразу нескольких способов

Иногда нужно применить не один, а несколько способов разложения многочлена на множители сразу.

Это конспект по теме «Разложение на множители» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

Для закрепления материала будут рассмотрены несколько примеров и рассмотрена теория по разложению дробей на простейшие. Подробно рассмотрим метод неопределенных коэффициентов и метод частных значений, изучим всевозможные комбинации.

Простые дроби имеют название элементарных дробей.

Yandex.RTB R-A-339285-1

Дроби различают:

  1. A x - a ;
  2. A (x - a) n ;
  3. M x + N x 2 + p x + q ;
  4. M x + N (x 2 + p x + q) n .

A , M , N , a , p , q из которых являются числами, а дискриминант дробей 3 и 4 меньше нуля, то есть корней не имеет выражение.

При упрощении выражения быстрее выполняются вычислительные функции. Представление дробно-рациональной дроби как суммы простейших дробей аналогично. Для этого применяют ряды Лорана для того, чтобы разложить в степенные ряды или для поиска интегралов.

Например, если необходимо брать интеграл от дробно-рациональной функции вида ∫ 2 x 3 + 3 x 3 + x d x . После чего необходимо произвести разложение подынтегральной функции на простейшие дроби. Все это к формированию простых интегралов. Получаем, что

∫ 2 x 3 + 3 x 3 + x d x = ∫ 2 + 2 x - 3 x + 2 x 2 + 1 d x = = ∫ 2 d x + ∫ 3 x d x - ∫ 3 x + 2 x 2 + 1 d x = = 2 x + 3 ln x - 3 2 ∫ d (x 2 + 1) x 2 + 1 - 2 ∫ d x x 2 + 1 = = 2 x + 3 ln x - 3 2 ln x 2 + 1 - 2 a r c tan (x) + C

Пример 1

Произвести разложение дроби вида - 2 x + 3 x 3 + x .

Решение

Когда степень числителя многочлена меньше степени многочлена в знаменателе, имеет место разложение на простейшие дроби. Иначе применяется деление для выделения целой части, после чего производят разложение дробно-рациональной функции.

Применим деление углом. Получаем, что

Отсюда следует, что дробь примет вид

2 x 3 + 3 x 3 + x = 2 + - 2 x + 3 x 3 + x

Значит, такое разложение приведет к тому, что результат будет равен - 2 x + 3 x 3 + x .

Алгоритм метода неопределенных коэффициентов

Для того, чтобы правильно произвести разложение, необходимо придерживаться нескольких пунктов:

  • Произвести разложение на множители. можно применять вынесение за скобки, формулы сокращенного умножения, подбор корня. Имеющийся пример x 3 + x = x x 2 + 1 для упрощения выносят х за скобки.
  • Разложение дроби на простейшие дроби с неопределенными коэффициентами.

Рассмотрим на нескольких примерах:

Пример 2

Когда в знаменателе имеется выражение вида (x - a) (x - b) (x - c) (x - d) , количество множителей не имеет значения, дробь можно представить в виде дроби первого типа A x - a + B x - b + C x - c + D x - d , где a , b , c и d являются числами, A , B , C и D – неопределенными коэффициентами.

Пример 3

Когда знаменатель имеет выражение (x - a) 2 (x - b) 4 (x - c) 3 , количество множителей также не имеет значения, причем саму дробь необходимо привести ко второму или первому типу вида:

A 2 x - a 2 + A 1 x - a + B 4 x - b 4 + B 3 x - b 3 + B 2 x - b 2 + B 1 x - b + + C 3 x - c 3 + C 2 x - c 2 + C 1 x - c

где имеющиеся a , b , c являются числами, а A 1 , A 2 , B 1 , B 2 , B 3 , B 4 , C 1 , C 2 , C 3 - неопределенными коэффициентами. Какова степень многочлена, такое количество слагаемых имеем.

Пример 4

Когда знаменатель имеет вид типа x 2 + p x + q x 2 + r x + s , тогда количество квадратичных функций значения не имеет, а дробь принимает вид третьего типа P x + Q x 2 + p x + q + R x + S x 2 + r x + s ,где имеющиеся p , q , r и s являются числами, а P , Q , R и S – определенными коэффициентами.

Пример 5

Когда знаменатель имеет вид x 2 + p x + q 4 x 2 + r x + s 2 , количество множителей значения не имеет также, как и их степени, дробь представляется в виде третьего и четверного типов вида

P 4 x + Q 4 (x 2 + p x + q) 4 + P 3 x + Q 3 (x 2 + p x + q) 3 + P 2 x + Q 2 (x 2 + p x + q) 2 + P 1 x + Q 1 x 2 + p x + q + + R 2 x + S 2 (x 2 + r x + s) 2 + R 1 x + S 1 x 2 + r x + s

где имеющиеся p , q , r и s являются числами, а P 1 , P 2 , P 3 , P 4 , R 1 , R 2 , S 1 , S 2 - неопределенными коэффициентами.

Пример 6

Когда имеется знаменатель вида (x - a) (x - b) 3 (x 2 + p x + q) (x 2 + r x + s) 2 , тогда дробь необходимо представить в виде четвертого типа

A x - a + B 3 x - b 3 + В 2 x - b 2 + В 1 x - b + + P x + Q x 2 + p x + q + R 2 x + S 2 x 2 + r x + s 2 + R 1 x + S 1 x 2 + r x + s

Рассмотрим на примере дроби. Когда дробь раскладывается в сумму третьим типом вида 2 x - 3 x 3 + x = 2 x - 3 x (x 2 + 1) = A x + B x + C x 2 + 1 , где A , B и C являются неопределенными коэффициентами.

Приведение полученной суммы простейших дробей при наличии неопределенного коэффициента к общему знаменателю, применяем метода группировки при одинаковых степенях х и получаем, что

2 x - 3 x 3 + x = 2 x - 3 x (x 2 + 1) = A x + B x + C x 2 + 1 = = A (x 2 + 1) + (B x + C) x x (x 2 + 1) = A x 2 + A + B x 2 + C x x (x 2 + 1) = = x 2 (A + B) + x C + A x (x 2 + 1)

Когда х отличен от 0 , тогда решение сводится к приравниванию двух многочленов. Получаем 2 x - 3 = x 2 (A + B) + x C + A . Многочлены считаются равными тогда, когда совпадают коэффициенты при одинаковых степенях.

  • Приравнивание коэффициентов с одинаковыми степенями х. Получим, что система линейных уравнений при наличии определенных коэффициентов:
    A + B = 0 C = 2 A = - 3
  • Решение полученной системы при помощи любого способа для нахождения неопределенных коэффициентов: A + B = 0 C = 2 A = - 3 ⇔ A = - 3 B = 3 C = 2
  • Производим запись ответа:
    2 x 3 + 3 x 3 + x = 2 - 2 x - 3 x 3 + x = 2 - 2 x - 3 x (x 2 + 1) = = 2 - A x + B x + C x 2 + 1 = 2 - - 3 x + 3 x + 2 x 2 + 1 = 2 + 3 x - 3 x + 2 x 2 + 1

Необходимо постоянно выполнять проверки. Это способствует тому, что приведение к общему знаменателю получит вид

2 + 3 x - 3 x + 2 x 2 + 1 = 2 x (x 2 + 1) - (3 x + 2) x x (x 2 + 1) = 2 x 3 + 3 x 3 + x

Методом неопределенных коэффициентов считают метод разложения дроби на другие простейшие.

Использование метода частных значений способствует представлению линейных множителей таким образом:

x - a x - b x - c x - d .

Пример 7

Произвести разложение дроби 2 x 2 - x - 7 x 3 - 5 x 2 + 6 x .

Решение

По условию имеем, что степень многочлена числителя меньше степени многочлена знаменателя, тогда деление выполнять не нужно. Необходимо перейти к разложению на множители. для начала необходимо выполнить вынесение х за скобки. Получим, что

x 3 - 5 x 2 + 6 x = x (x 2 - 5 x + 6)

Квадратный трехчлен x 2 - 5 x + 6 имеет корни, которые находим не по дискриминанту, а по теореме Виета. Получим:

x 1 + x 2 = 5 x 1 · x 2 = 6 ⇔ x 1 = 3 x 2 = 2

Запись трехчлена может быть в виде x 2 - 5 x + 6 = (x - 3) (x - 2) .

Тогда изменится знаменатель: x 2 - 5 x 2 + 6 x = x (x 2 - 5 x + 6) = x (x - 3) (x - 2)

Имея такой знаменатель, дробь раскладываем на простейшие дроби с неопределенными коэффициентами. Выражение примет вид:

2 x 2 - x - 7 x 3 - 5 x 2 + 6 x = 2 x 2 - x - 7 x (x - 3) (x - 2) = A x + B x - 3 + C x - 2

Полученный результат необходимо приводить к общему знаменателю. Тогда получаем:

2 x 2 - x - 7 x 3 - 5 x 2 + 6 x = 2 x 2 - x - 7 x (x - 3) (x - 2) = A x + B x - 3 + C x - 2 = = A (x - 3) (x - 2) + B x (x - 2) + C x (x - 3) x (x - 3) (x - 2)

После упрощения придем к неравенству вида

2 x 2 - x - 7 x (x - 3) (x - 2) = A (x - 3) (x - 2) + B x (x - 2) + C x (x - 3) x (x - 3) (x - 2) ⇒ ⇒ 2 x 2 - x - 7 = A (x - 3) (x - 2) + B x (x - 2) + C x (x - 3)

Теперь переходим к нахождению неопределенных коэффициентов. Нужно подставлять полученные значения в равенство для того, чтобы знаменатель обратился в ноль, то есть значения х = 0 , х = 2 и х = 3 .

Если х = 0 , получим:

2 · 0 2 - 0 - 7 = A (0 - 3) (0 - 2) + B · 0 · (0 - 2) + C · 0 · (0 - 3) - 7 = 6 A ⇒ A = - 7 6

Если x = 2 , тогда

2 · 2 2 - 2 - 7 = A (2 - 3) (2 - 2) + B · 2 · (2 - 2) + C · 2 · (2 - 3) - 1 = - 2 C ⇒ C = 1 2

Если x = 3 , тогда

2 · 3 2 - 3 - 7 = A (3 - 3) (3 - 2) + B · 3 · (3 - 2) + C · 3 · (3 - 3) 8 = 3 B ⇒ B = 8 3

Ответ: 2 x 2 - x - 7 x 3 - 5 x 2 + 6 x = A x + B x - 3 + C x - 2 = - 7 6 · 1 x + 8 3 · 1 x - 3 + 1 2 · 1 x - 2

Метод коэффициентов и метод частных значений отличаются только способом нахождения неизвестных. Данные методы могут быть совмещены для быстрого упрощения выражения.

Пример 8

Произвести разложение выражения x 4 + 3 x 3 + 2 x - 11 (x - 1) (x + 1) (x - 3) 3 на простейшие дроби.

Решение

По условию имеем, что степень числителя многочлена меньше знаменателя, значит зазложение примет вид

x 4 + 3 x 3 + 2 x - 11 (x - 1) (x + 1) (x - 3) 3 = A x - 1 + B x + 1 + C (x - 3) 3 + C (x - 3) 2 + C x - 3

Производим приведение к общему знаменателю. Имеем, что

x 4 + 3 x 3 + 2 x - 11 (x - 1) (x + 1) (x - 3) 3 = A x - 1 + B x + 1 + C (x - 3) 3 + C (x - 3) 2 + C x - 3 = = A (x + 1) (x - 3) 3 + B (x - 1) (x - 3) 3 (x - 1) (x + 1) (x - 3) 3 + + C 3 (x - 1) (x + 1) + C 2 (x - 1) (x + 1) (x - 3) + C 1 (x - 1) (x + 1) (x - 3) 2 (x - 1) (x + 1) (x - 3) 3

Приравняем числители и получим, что

x 4 + 3 x 3 + 2 x + 11 = = A (x + 1) (x - 3) 3 + B (x - 1) (x - 3) 3 + + C 3 (x - 1) (x + 1) + C 2 (x - 1) (x + 1) (x - 3) + C 1 (x - 1) (x + 1) (x - 3) 2

Из выше написанного понятно, что нули знаменателя – это х = 1 , х = - 1 и х = 3 . Тогда применим метод частных решений. Для этого подставим значения х. получим, что если х=1:

5 = - 16 A ⇒ A = 5 16

Если х = - 1

15 = 128 B ⇒ B = - 15 128

157 = 8 C 3 ⇒ C 3 = 157 8

Отсюда следует, что нужно найти значения C 1 и C 3 .

Поэтому подставим полученный значения в числитель, тогда

x 4 + 3 x 3 + 2 x - 11 = = 5 16 (x + 1) (x - 3) 3 - 15 128 (x - 1) (x - 3) 3 + 157 8 (x - 1) (x + 1) + + C 2 (x - 1) (x + 1) (x - 3) + C 1 (x - 1) (x + 1) (x - 3) 2

Раскроем скобки для того, чтобы привести подобные слагаемые с одинаковыми степенями. Придем к выражению вида

x 4 + 3 x 3 + 2 x - 11 = x 4 25 128 + C 1 + x 3 - 85 64 + C 2 - 6 C 1 + + x 2 673 32 - 3 C 2 + 8 C 1 + x 405 64 - C 2 + 6 C 1 + 3 C 2 - 9 C 1 - 3997 128

Необходимо приравнять соответствующие коэффициенты с одинаковыми степенями, тогда сможем найти искомое значение C 1 и C 3 . Теперь необходимо решить систему:

25 128 + C 1 = 1 - 85 64 + C 2 - 6 C 1 = 3 673 32 - 3 C 2 + 8 C 1 = 0 405 64 - C 2 + 6 C 1 = 2 3 C 2 - 9 C 1 - 3997 128 = 11

Первое уравнение дает возможность найти C 1 = 103 128 , а второе C 2 = 3 + 85 64 + 6 C 1 = 3 + 85 64 + 6 · 103 128 = 293 32 .

Итог решения – это искомое разложение дроби на простейшие вида:

x 4 + 3 x 3 + 2 x - 11 (x - 1) (x + 1) (x - 3) 3 = A x - 1 + B x + 1 + C 3 x - 3 3 + C 2 x - 3 2 + C 1 x - 3 = = 5 16 1 x - 1 - 15 128 1 x + 1 + 157 8 · 1 x - 3 3 + 293 32 1 x - 3 2 + 103 128 1 x - 3

Примечание

При непосредственном применении метода неопределенных коэффициентов необходимо было бы решать все пять линейных уравнений, объединенных в систему. Такой метод упрощает поиск значения переменных и дальнейшее решение в совокупности. Иногда применяется несколько методов. Это необходимо для быстрого упрощения всего выражения и поиска результата.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На данном уроке будут рассмотрены различные способы разложения знаменателя на множители при сложении и вычитании алгебраических дробей. Фактически, мы вспомним те методы, которые уже были изучены ранее. Это и вынесение общего множителя за скобки, и группировка слагаемых, и применение формул сокращённого умножения, а также выделение полного квадрата. Все эти методы применяются при сложении и вычитании алгебраических дробей с разными знаменателями. В рамках урока мы вспомним все вышеперечисленные правила, а также разберём примеры на применение этих правил.

Напомним, что алгебраической дробью называется выражение , где - многочлены. А многочлены можно и нужно уметь раскладывать на множители. Предположим, нам необходимо сложить или вычесть две алгебраические дроби: .

Каков алгоритм наших действий?

1. Сократить или упростить каждую из дробей.

2. Найти наименьший общий знаменатель двух дробей.

Эти действия требуют разложения на множители многочленов .

Рассмотрим несколько примеров на сокращение (упрощение) дробей.

Пример 1. Упростить: .

Решение:

Первое, что необходимо попытаться сделать при сокращении, - вынести общий множитель за скобки.

В нашем случае и в числителе, и в знаменателе есть множители, которые можно вынести за скобки.

.

Затем сократим общие множители числителя и знаменателя. Получим:

При этом учтём, что знаменатель дроби не может равняться . То есть: .

Ответ: .

Пример 2. Упростить: .

Решение:

По схеме решения предыдущего примера попытаемся вынести за скобки общий множитель. В числителе это сделать нельзя, а в знаменателе можно вынести за скобку .

Если не получается вынести общий множитель, нужно попробовать воспользоваться формулами сокращённого умножения. Действительно, в числителе стоит полный квадрат разности. Получаем:

.

Мы видим похожие скобки в числителе и знаменателе.

Однако они отличаются знаком.

Для этого воспользуемся равенством: . Отсюда получаем: . Получаем:

Ответ: .

Рассмотрим теперь пример, в котором необходимо упростить разность двух дробей.

Пример 3. Упростить: .

Решение:

Поскольку в знаменателе первой дроби стоит разность кубов, воспользуемся формулой сокращённой умножения. Получаем:

Ответ: .

Давайте вспомним: что же такое многочлен? - это сумма одночленов. А одночлен - это произведение степеней переменных и чисел.

Теперь перечислим и разберём примеры разложения многочленов на множители.

Способ 1. Вынесение общего множителя за скобки.

Пример 4. Разложить на множители: .

Пример 5. Разложить на множители: .

В последнем примере общий множитель - двучлен.

Способ 2. Группировка.

Пример 6. Разложить на множители: .

Решение:

Вынести общий множитель за скобки в этом примере не удаётся. В этом случае необходимо попробовать сгруппировать слагаемые, в которых есть общие множители.

В этом примере удобно сгруппировать одночлены, содержащие и . Получаем: . Мы видим, что выражения в скобках практически одинаковы с точностью до знака. Получаем: .

Ответ: .

Способ 3. Формулы сокращенного умножения.

Перечислим основные формулы сокращённого умножения:

1. - разность квадратов;

2. - квадрат суммы (разности);

3. - разность кубов (выражение во второй скобке называется неполным квадратом суммы);

Сумма кубов (выражение во второй скобке называется неполным квадратом разности).

Надо не только запомнить эти формулы, но и уметь находить и применять их в реальных задачах.

Пример 7. Разложить на множители: .

Пример 8. Разложить на множители: .

Решение:

Здесь напрашивается формула квадрата разности. Однако возникает вопрос: как применить эту формулу. Проще всего выделить квадраты, а затем уже найти удвоенное произведение. В данном примере: . То есть, в роли . Получаем: .

Ответ: .

Не стоит забывать, что в чистом виде данные методы применяются редко. Чаще используются комбинированные методы.

Способ 4. Выделение полного квадрата.

Рассмотрим применение данного метода на конкретном примере.

Пример 9. Разложить на множители: .

Решение:

Выделение полного квадрата обычно происходит по первым двум слагаемым. Действительно, квадрат первого - - у нас уже есть. Значит, второе слагаемое должно представлять собой удвоенное произведение первого выражения на второе. То есть: . Значит, если в роли из формулы квадрата разности выступает , то в роли должна выступать . Для применения этой формулы нам не хватает . Если чего-то не хватает, то можно добавить это выражение и вычесть, чтобы не менять значение выражения. Получаем.

Данный сервис предназначен для разложения дроби вида:

На сумму простейших дробей. Данный сервис будет полезен для решения интегралов . см. пример .

Инструкция . Введите числитель и знаменатель дроби. Нажмите кнопку Решить.

При оформлении в качестве переменной использовать x t z u p λ
Примечание: Например, x 2 записывается как x^2 , (x-2) 3 пишем как (x-2)^3 . Между сомножителями ставим знак умножить (*) .

Правила ввода функции

Это поле предназначено для ввода числителя выражения
Общую переменную x необходимо предварительно вынести за скобки. Например, x 3 + x = x(x 2 + 1) или x 3 - 5x 2 + 6x = x(x 2 - 5x + 6) = x(x-3)(x-2).

Правила ввода функции

Это поле предназначено для ввода знаменателя выражения Например, x 2 записывается как x^2 , (x-2) 3 пишем как (x-2)^3 . Между сомножителями ставим знак умножить (*) .
Общую переменную x необходимо предварительно вынести за скобки. Например, x 3 + x = x(x 2 + 1) или x 3 - 5x 2 + 6x = x(x 2 - 5x + 6) = x(x-3)(x-2).

Алгоритм метода неопределенных коэффициентов

  1. Разложение знаменателя на множители.
  2. Разложение дроби в виде суммы простейших дробей с неопределенными коэффициентами.
  3. Группировка числителя с одинаковыми степенями x .
  4. Получение системы линейных алгебраических уравнений с неопределенными коэффициентами в качестве неизвестных.
  5. Решение СЛАУ: методом Крамера , методом Гаусса , методом обратной матрицы или методом исключения неизвестных.

Пример . Используем метод разложения на простейшие. Разложим функцию на простейшие слагаемые:


Приравняем числители и учтем, что коэффициенты при одинаковых степенях х , стоящие слева и справа должны совпадать
2x-1 = A(x+2) 2 (x-4) + Bx(x+2) 2 (x-4) + Cx(x-4) + Dx(x+2) 2
A + B = 0
-12A -8B -4C + 4D = 2
-16A = -1
0A -2B + C + 4D = 0
Решая ее, находим:
A = 1 / 16 ;B = - 1 / 9 ;C = - 5 / 12 ;D = 7 / 144 ;

Что такое разложение на множители? Это способ превращения неудобного и сложного примера в простой и симпатичный.) Оч-ч-чень мощный приём! Встречается на каждом шагу и в элементарной математике, и в высшей.

Подобные превращения на математическом языке называются тождественными преобразованиями выражений. Кто не в теме - прогуляйтесь по ссылке. Там совсем немного, просто и полезно.) Смысл любого тождественного преобразования - это запись выражения в другом виде с сохранением его сути.

Смысл разложения на множители предельно прост и понятен. Прямо из самого названия. Можно забыть (или не знать), что такое множитель, но то, что это слово происходит от слова "умножить" сообразить-то можно?) Разложить на множители означает: представить выражение в виде умножения чего-то на чего-то. Да простят мне математика и русский язык...) И всё.

Например, надо разложить число 12. Можно смело записать:

Вот мы и представили число 12 в виде умножения 3 на 4. Прошу заметить, что циферки справа (3 и 4) совсем другие, чем слева (1 и 2). Но мы прекрасно понимаем, что 12 и 3·4 одно и то же. Суть числа 12 от преобразования не изменилась.

А можно разложить 12 по-другому? Легко!

12=3·4=2·6=3·2·2=0,5·24=........

Вариантов разложения - бесконечное количество.

Разложение чисел на множители - штука полезная. Очень помогает, например, при действиях с корнями. Но разложение на множители алгебраических выражений вещь не то, что полезная, она - необходимая! Чисто для примера:

Упростить:

Кто не умеете раскладывать выражение на множители, отдыхает в сторонке. Кто умеет - упрощает и получает:

Эффект потрясающий, правда?) Кстати, решение достаточно простое. Ниже сами увидите. Или, например, такое задание:

Решить уравнение:

х 5 - x 4 = 0

Решается в уме, между прочим. С помощью разложения на множители. Ниже мы решим этот пример. Ответ: x 1 = 0; x 2 = 1 .

Или, то же самое, но для старшеньких):

Решить уравнение:

На этих примерах я показал основное назначение разложения на множители: упрощение дробных выражений и решение некоторых типов уравнений. Рекомендую запомнить практическое правило:

Если перед нами страшное дробное выражение, можно попробовать разложить на множители числитель и знаменатель. Очень часто дробь сокращается и упрощается.

Если перед нами уравнение, где справа - ноль, а слева - не пойми что, можно попробовать разложить левую часть на множители. Иногда помогает).

Основные способы разложения на множители.

Вот они, самые популярные способы:

4. Разложение квадратного трёхчлена.

Эти способы надо запомнить. Именно в таком порядке. Сложные примеры проверяются на все возможные способы разложения. И лучше уж проверять по порядочку, чтобы не запутаться... Вот по порядочку и начнём.)

1. Вынесение общего множителя за скобки.

Простой и надёжный способ. От него плохо не бывает! Бывает либо хорошо, либо никак.) Поэтому он и стоит первым. Разбираемся.

Все знают (я верю!)) правило:

a(b+c) = ab+ac

Или, в более общем виде:

a(b+c+d+.....) = ab+ac+ad+....

Все равенства работают как слева направо, так и наоборот, справа налево. Можно записать:

ab+ac = a(b+c)

ab+ac+ad+.... = a(b+c+d+.....)

Вот и вся суть вынесения общего множителя за скобки.

В левой части а - общий множитель для всех слагаемых. Умножается на всё, что есть). Справа это самое а находится уже за скобками.

Практическое применение способа рассмотрим на примерах. Сначала вариант простой, даже примитивный.) Но на этом варианте я отмечу (зелёным цветом) очень важные моменты для любого разложения на множители.

Разложить на множители:

ах+9х

Какой общий множитель сидит в обоих слагаемых? Икс, разумеется! Его и будем выносить за скобки. Делаем так. Сразу пишем икс за скобками:

ах+9х=х(

А в скобках пишем результат деления каждого слагаемого на этот самый икс. По порядочку:

Вот и всё. Конечно, так подробно расписывать не нужно, Это в уме делается. Но понимать, что к чему, желательно). Фиксируем в памяти:

Пишем общий множитель за скобками. В скобках записываем результаты деления всех слагаемых на этот самый общий множитель. По порядочку.

Вот мы и разложили выражение ах+9х на множители. Превратили его в умножение икса на (а+9). Замечу, что в исходном выражении тоже было умножение, даже два: а·х и 9·х. Но оно не было разложено на множители! Потому, что кроме умножения, в этом выражении было ещё и сложение, знак "+"! А в выражении х(а+9) кроме умножения ничего нет!

Как так!? - слышу возмущённый глас народа - А в скобках!?)

Да, внутри скобок есть сложение. Но фишка в том, что пока скобки не раскрыты, мы рассматриваем их как одну букву. И все действия со скобками делаем целиком, как с одной буквой. В этом смысле в выражении х(а+9) кроме умножения ничего нет. В этом вся суть разложения на множители.

Кстати, можно ли как-то проверить, всё ли правильно мы сделали? Запросто! Достаточно обратно умножить то, что вынесли (икс) на скобки и посмотреть - получилось ли исходное выражение? Если получилось, всё тип-топ!)

х(а+9)=ах+9х

Получилось.)

В этом примитивном примере проблем нет. Но если слагаемых несколько, да ещё с разными знаками... Короче, каждый третий ученик косячит). Посему:

При необходимости проверяем разложение на множители обратным умножением.

Разложить на множители:

3ах+9х

Ищем общий множитель. Ну, с иксом всё ясно, его можно вынести. А есть ли ещё общий множитель? Да! Это тройка. Можно же записать выражение вот так:

3ах+3·3х

Здесь сразу видно, что общий множителем будет . Вот его и выносим:

3ах+3·3х=3х(а+3)

Разложили.

А что будет, если вынести только х? Да ничего особенного:

3ах+9х=х(3а+9)

Это тоже будет разложение на множители. Но в этом увлекательном процессе принято раскладывать всё до упора, пока есть возможность. Здесь в скобках есть возможность вынести тройку. Получится:

3ах+9х=х(3а+9)=3х(а+3)

То же самое, только с одним лишним действием.) Запоминаем:

При вынесении общего множителя за скобки, стараемся вынести максимальный общий множитель.

Продолжаем развлечение?)

Разложить на множители выражение:

3ах+9х-8а-24

Что будем выносить? Тройку, икс? Не-е-е... Нельзя. Напоминаю, выносить можно только общий множитель, который есть во всех слагаемых выражения. На то он и общий. Здесь такого множителя нету... Что, можно не раскладывать!? Ну да, обрадовались, как же... Знакомьтесь:

2. Группировка.

Собственно, группировку трудно назвать самостоятельным способом разложения на множители. Это, скорее, способ выкрутиться в сложном примере.) Надо сгруппировать слагаемые так, чтобы всё получилось. Это только на примере показать можно. Итак, перед нами выражение:

3ах+9х-8а-24

Видно, что какие-то общие буквы и числа имеются. Но... Общего множителя, чтобы был во всех слагаемых - нет. Не падаем духом и разбиваем выражение на кусочки. Группируем. Так, чтобы в каждом кусочке был общий множитель, было чего вынести. Как разбиваем? Да просто ставим скобки.

Напомню, что скобки можно ставить где угодно и как угодно. Лишь бы суть примера не менялась. Например, можно так:

3ах+9х-8а-24 =(3ах+9х)-(8а+24 )

Прошу обратить внимание на вторые скобки! Перед ними стоит знак минус, а и 24 стали положительными! Если, для проверки, обратно раскрыть скобки, знаки поменяются, и мы получим исходное выражение. Т.е. суть выражения от скобок не изменилась.

Но если вы просто воткнули скобки, не учитывая смену знака, например, вот так:

3ах+9х-8а-24 =(3ах+9х)-(8а-24 )

это будет ошибкой. Справа - уже другое выражение. Раскройте скобки и всё станет видно. Дальше можно не решать, да...)

Но возвращаемся к разложению на множители. Смотрим на первые скобки (3ах+9х) и соображаем, можно ли чего вынести? Ну, этот пример мы выше решали, можно вынести 3х:

(3ах+9х)=3х(а+3)

Изучаем вторые скобки, там можно вынести восьмёрку:

(8а+24)=8(а+3)

Всё наше выражение получится:

(3ах+9х)-(8а+24)=3х(а+3)-8(а+3)

Разложили на множители? Нет. В результате разложения должно получиться только умножение, а у нас знак минус всё портит. Но... В обоих слагаемых есть общий множитель! Это (а+3) . Я не зря говорил, что скобки целиком - это, как бы, одна буква. Значит, эти скобки можно вынести за скобки. Да, именно так и звучит.)

Делаем, как было рассказано выше. Пишем общий множитель (а+3) , во вторых скобках записываем результаты деления слагаемых на (а+3) :

3х(а+3)-8(а+3)=(а+3)(3х-8)

Всё! Справа кроме умножения ничего нет! Значит, разложение на множители завершено успешно!) Вот оно:

3ах+9х-8а-24=(а+3)(3х-8)

Повторим кратенько суть группировки.

Если в выражении нет общего множителя для всех слагаемых, разбиваем выражение скобками так, чтобы внутри скобок общий множитель был. Выносим его и смотрим, что получилось. Если повезло, и в скобках остались совершенно одинаковые выражения, выносим эти скобки за скобки.

Добавлю, что группировка - процесс творческий). Не всегда с первого раза получается. Ничего страшного. Иногда приходится менять слагаемые местами, рассматривать разные варианты группировки, пока не найдётся удачный. Главное здесь - не падать духом!)

Примеры.

Сейчас, обогатившись знаниями, можно и хитрые примеры порешать.) Была в начале урока тройка таких...

Упростить:

В сущности, этот пример мы уже решили. Незаметно для себя.) Напоминаю: если нам дана страшная дробь, пробуем разложить числитель и знаменатель на множители. Других вариантов упрощения просто нет.

Ну, знаменатель здесь не раскладывается, а числитель... Числитель мы уже разложили по ходу урока! Вот так:

3ах+9х-8а-24=(а+3)(3х-8)

Пишем результат разложения в числитель дроби:

По правилу сокращения дробей (основное свойство дроби), мы можем разделить (одновременно!) числитель и знаменатель на одно и то же число, или выражение. Дробь от этого не меняется. Вот и делим числитель и знаменатель на выражение (3х-8) . И там и там получим единички. Окончательный результат упрощения:

Особо подчеркну: сокращение дроби возможно тогда и только тогда, когда в числителе и знаменателе кроме умножения выражений ничего нет. Именно потому превращение суммы (разности) в умножение так важно для упрощения. Конечно, если выражения разные, то и не сократится ничего. Бывет. Но разложение на множители даёт шанс. Этого шанса без разложения - просто нет.

Пример с уравнением:

Решить уравнение:

х 5 - x 4 = 0

Выносим общий множитель х 4 за скобки. Получаем:

х 4 (x-1)=0

Соображаем, что произведение множителей равно нулю тогда и только тогда, когда какой-нибудь из них равен нулю. Если сомневаетесь, найдите мне парочку ненулевых чисел, которые при умножении ноль дадут.) Вот и пишем, сначала первый множитель:

При таком равенстве второй множитель нас не волнует. Любой может быть, всё равно в итоге ноль получится. А какое число в четвёртой степени ноль даст? Только ноль! И никакое другое... Стало быть:

С первым множителем разобрались, один корень нашли. Разбираемся со вторым множителем. Теперь нас не волнует уже первый множитель.):

Вот и нашли решение: x 1 = 0; x 2 = 1 . Любой из этих корней подходит к нашему уравнению.

Очень важное замечание. Обратите внимание, мы решали уравнение по кусочкам! Каждый множитель приравнивали к нулю, не обращая внимания на остальные множители. Кстати, если в подобном уравнении будет не два множителя, как у нас, а три, пять, сколько угодно - решать будем точно так же. По кусочкам. Например:

(х-1)(х+5)(х-3)(х+2)=0

Тот, кто раскроет скобки, перемножит всё, тот навсегда зависнет на этом уравнении.) Правильный ученик сразу увидит, что слева кроме умножения ничего нет, справа - ноль. И начнёт (в уме!) приравнивать к нулю все скобочки по порядочку. И получит (за 10 секунд!) верное решение: x 1 = 1; x 2 = -5; x 3 = 3; x 4 = -2.

Здорово, правда?) Такое элегантное решение возможно, если левая часть уравнения разложена на множители. Намёк понятен?)

Ну и, последний пример, для старшеньких):

Решить уравнение:

Чем-то он похож на предыдущий, не находите?) Конечно. Самое время вспомнить, что в алгебре седьмого класса под буквами могут скрываться и синусы, и логарифмы, и всё, что угодно! Разложение на множители работает во всей математике.

Выносим общий множитель lg 4 x за скобки. Получаем:

lg 4 x=0

Это один корень. Разбираемся со вторым множителем.

Вот и окончательный ответ: x 1 = 1; x 2 = 10 .

Надеюсь, вы осознали всю мощь разложения на множители в упрощении дробей и решении уравнений.)

В этом уроке мы познакомились с вынесением общего множителя и группировкой. Остаётся разобраться с формулами сокращённого умножения и квадратным трёхчленом.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.