Литье в песчаные формы. Гипсовая смесь для изготовления форм точного литья Смесь для литья

Формовочные смеси. Для изготовления форм и стержней применяются разнообразные формовочные и стержневые смеси, состав которых зависит от способа формовки, рода сплава, характера производства, вида литья и технологических средств и материалов, имеющихся в распоряжении производства.

В зависимости от использования песчано-глинистые формовочные смеси классифицируются следующим образом:

  • по применению при формовке (облицовочные, наполнительные и единые);
  • по состоянию формы перед заливкой (для сырых, сухих, подсушиваемых и химически затвердевающих форм);
  • по роду заливаемого в форму сплава (для чугунного, стального и цветного литья).

Облицовочная смесь используется для облицовки рабочей поверхности форм. Толщина облицовочного слоя зависит от состава облицовочной смеси и от размеров отливки (от 20 до 100 мм и выше). Поверх облицовочной смеси в опоки засыпается наполнительная смесь, которая изготовляется из оборотной земли с добавлением 5-10% свежих материалов (песка, глины).

Единая смесь служит для набивки всего объема формы и применяется для изготовления мелкого и среднего литья в условиях серийного и массового производства. Единая смесь отличается от наполнительной смеси большим содержанием свежих материалов и некоторого количества специальных добавок (молотого угля, торфяного пека и др.).

Смеси для сухих форм отличаются от смесей для сырых форм меньшим содержанием оборотной смеси и увеличенным процентом содержания глины и воды. Часто формы, подвергающиеся сушке, изготовляются из облицовочной и наполнительной смесей, а для увеличения их податливости в смесь вводят выгорающие добавки (опилки, торф и др.).

Смеси для подсушиваемых форм имеют в своем составе оборотную смесь, свежие материалы (песок и глину) и крепители (СП, СБ). В качестве облицовочных смесей они нашли широкое применение при изготовлении чугунных средних и крупных ответственных отливок. В зависимости от веса отливки, для которой изготовляется форма, время подсушивания составляет 20-60 мин. На московском чугунолитейном заводе «Станколит» для получения отливок весом до 1000 кГ применяют смеси, подсушиваемые в течение 30 мин.

Состав смеси, подсушиваемой в течение 30 мин (в % по объему)

Песок луховицкий 1К315А (ГОСТ2138-56) 88-89

Формовочная глина ФВ-1 1-2

Опилки древесные 5

Асбестовая крошка 5

Крепитель СБ (сверх 100%) 1,5

Сульфитно-спиртовая барда (сверх 100%) 2-3

При подсушке форм на рабочих поверхностях образуется прочный, твердый слой, оказывающий влияние на получение у отливок чистой поверхности и повышенной точности.

Смеси для химически-затвердевающих форм изготовляют из кварцевого песка с добавлением 4,5-6,5% жидкого стекла и 1,5% едкого натра с концентрацией 10-20%. Добавление к смеси едкого натра (см. стр. 25) позволяет сохранить технологические свойства на более длительное время, а также повысить прочность смеси после химического затвердевания. Для чугунных отливок весом от 1000 до 5000 кГ на заводе «Станколит» применяют химически затвердевающую смесь следующего состава.

Состав химически затвердевающей смеси (в % к объему)

Песок луховицкий 1К315А (ГОСТ 2138-56) 88-89

Формовочная глина ФВ-1 3-4

Уголь молотый ГК 8

Жидкое стекло (сверх 100%) с модулем, равным 2,6-2,7 6

15%-ный раствор едкого натра (плотность 1300 кГ/м 3) 075-1,0

Жидкостекольные смеси затвердевают при продувке их углекислым газом (СО 2). При этом происходит разложение силиката натрия и образование углекислого натрия и кремнезема. Кремнезем, присоединяя к себе воду, образует химическое вещество, называемое гелем кремниевой кислоты.

Гель кремниевой кислоты, обволакивающий зерна песка в смеси, обладает способностью упрочняться при потере части присоединенной воды. В силу этого пленки геля, находясь между зернами песка, по истечении небольшого промежутка времени без подвода тепла связывают их в прочную и сухую массу. При продувке жидкостекольной смеси углекислым газом длительный тепловой цикл испарения влаги и затвердевания смеси заменяется ускоренным процессом химического связывания воды с составляющими элементами жидкого стекла.

В настоящее время широкое распространение получают самозатвердевающие облицовочные смеси. Областью применения этих смесей является производство средних и крупных отливок.

Готовую самотвердеющую смесь засыпают на модель. При изготовлении форм для крупных отливок модель облицовывают смесью и частично уплотняют.

После засыпки наполнительной смеси производят ее машинное уплотнение. Наполнительная смесь при изготовлении крупных форм уплотняется пескометом с возможной последующей подпрессовкой трамбовками. После набивки формы «самозатвердевают» на плацу или на конвейере.

Облицовочный слой формы из самотвердеющей смеси обладает высокой прочностью и газопроницаемостью, что обеспечивает получение отливок высокого качества.

Красят такие формы самовысыхающими противопригарными красками.

В табл. 7 приведены типовые составы формовочных смесей.


К атегория:

Производство точных отливок

Получение точных отливок из алюминиевых, магниевых и медных сплавов по постоянной модели

В гипсовых формах изготовляют отливки только определенной массы. Особо сложные отливки получают в оболочковых керамических формах. Согласно сообщениям некоторых специализированных фирм (Canadion-Marconi, Sterling Metals Limited, Munetto) керамические формы более выгодны для отливок, имеющих очень большую разностенность.

Преимущества гипсовых форм для литья алюминиевых сплавов приводятся в работах.

Гипсовые формовочные смеси. Связующим в этих смесях является гипс, качеству которого придается большое значение. Для гипсовых форм пригоден только такой гипс, который при затвердевании не дает усадку. Гипсовые формовочные смеси имеют следующий ориентировочный состав, %: 30-100 гипса, 5-40 асбеста, 19-30 талька, 5-80 кварцевой муки, 0-10 гончарной глины, 33 молотого кирпича, 0-50 кварцевого песка, 70 кристобалита, 0-1,5 извести, 0-5 портландцемента, 0,25- 3,0 бромистого аммония.

Гипсовые формовочные смеси замешивают на воде до сметано-образного состояния в следующих соотношениях компонентов: 0,35 ч. воды на 1 ч. смеси. Отдельные присадки в гипсовые смеси влияют на их свойства следующим образом: молотый асбест повышает пористость; если асбест используют в волокнистой форме, то улучшаются механические свойства формы. Молотый асбест должен иметь соответствующую зернистость. Кварцевая мука снижает объемные изменения гипсовой смеси во время затвердевания, прокаливания и охлаждения формы. Тальк и кварцевый песок, как инертные наполнители, компенсируют объемные изменения. Известь и цемент стабилизируют объемные изменения формы. Бромистый аммоний при обжиге форм разлагается на газообразные вещества и способствует повышению газопроницаемости форм.

Помимо указанных присадок вводят также много других, применяемых значительно реже: борную кислоту в количестве от 1 до 2% и буру 0,35-0,5%, способствующих быстрому отверждению смеси. Жидкое стекло повышает прочность и сопротивление форм против истирания. Альгинат натрия в количестве 0,1-0,5%, карбонат натрия (0,1-0,5%), формалин регулируют скорость отверждения. Алюминат кальция в количестве 2,5-12% и окись цинка замедляют отверждение и придают формам большую прочность. В качестве присадки для повышения прочности форм используют также добавки окислов алюминия, железа и т. п.

Гипсовые формы должны иметь следующие основные свойства: достаточную прочность и сопротивление истиранию; достаточную газопроницаемость; возможно наименьшие объемные изменения.

Перечисленные свойства обеспечиваются составом смеси и способом ее приготовления. Наибольшее влияние на свойства смеси (помимо ее состава) оказывает вязкость гипсовой массы, определяемой соотношением сухих компонентов и воды. В результате исследований авторов оказалось, что количество воды на 1 кг формовочной смеси не должно превышать 0,8 л, иначе формы будут иметь низкую прочность, высокую газопроницаемость и при сушке большую усадку; наилучшим является соотношение 0,45- 0,55 л воды на 1 кг смеси. При меньших количествах воды гипсовая смесь очень густая и заливать ею сложные модели трудно; в такую смесь замешивается много воздушных пузырьков. Если соотношение приближается к 0,8 л воды на 1 кг смеси, то отверждение смеси резко замедляется и она даже через 48 ч остается мягкой. Это относится к гипсовой смеси, состоящей из 50% гипса «Rocasso», 30% асбестовой крошки и 20% кварцевой муки.

На свойства гипсовых форм еще влияют температура и время перемешивания формовочной смеси. Для указанной гипсовой смеси лучше всего применять воду с температурой 50-52 °С; при этой температуре формы имеют максимальную прочность, сопротивление истиранию, газопроницаемость и постоянство объема. Время перемешивания гипсовой смеси не должно превышать 3 мин. Более быстрое или более длительное перемешивание приводит к усадке гипсовых форм.

Несмотря на то, что гипсовые формы имеют в составе смеси вещества для повышения газопроницаемости, все же ее величина недостаточна, и поэтому получаются отливки с дефектами, например неслитинами.

Газопроницаемость можно повысить тремя способами:

1) присадкой в формовочную смесь таких веществ, которые после отверждения и нагрева формы газифицируются и удаляются из нее и за счет этого повышают газопроницаемость. Чаще всего для этих целей используют хлорид или бромид аммония;

2) нагревом в автоклаве (способ Antioch). При нагреве во влажной атмосфере при температуре 90° С гипс (дигидрат кальция) переходит в полугидрат , так как при этой температуре дигидрат является неустойчивой формой сульфата кальция. Вода, выделившаяся при разложении дигидрата кальция, растворяет полугидраты до насыщения. Так как растворимость полугидратов с увеличением температуры снижается, то в автоклаве поддерживается низкое давление (от 0,07 до 0,2 МПа). После выдержки (6 ч) формы в автоклаве ее охлаждают во влажной атмосфере. Поверхность формы охлаждается быстрее, чем внутренняя ее часть, поэтому в наружных слоях формы выделяются мелкие кристаллы дигидрата, а во внутренних частях формы - крупные. В такой форме с мелкозернистым поверхностным слоем и пористой внутренней частью газопроницаемость существенно выше;

3) вспениванием смеси (способ Gypsum Hydroperm). Сущность способа в том, что в гипсовые смеси добавляют вспениватель. В смесь вводят вещества, например, карбонат и разбавленную кислоту или перекись водорода и аммиачную воду. Между ними при перемешивании смеси идут реакции с выделением большого объема газа. Можно вводить в гипсовую смесь органические пенообразователи, которые при перемешивании захватывают воздух и хорошо его стабилизируют во всем объеме. Отвердевшая гипсовая форма насыщена мелкими газовоздушными пузырьками, что увеличивает газопроницаемость формы; условно назовем этот способ механическим вспениванием. Для каждого из этих способов существует своя технология.

В первом случае газопроницаемость повышается только после нагрева до температуры, при которой из формы практически удалена вся вода (и свободная, и связанная). При нагреве в автоклаве и при механическом вспенивании формовочной массы пористость образуется в тот момент, когда в форме имеется вся вода, как химически связанная, так и свободная.

Формы, у которых газопроницаемость повышают по первому способу, содержат в исходной гипсовой смеси вещества, которые образуют пористость тотчас после затвердевания массы. Это необходимо для того, чтобы облегчить отвод водяных паров при последующей термообработке. Механически удаляется вода при температуре 85-96 °С. Сушить форму следует осторожно, так как пористость весьма невелика и при образовании больших объемов водяного пара может произойти ее повреждение. Минимальное время нагрева до указанной температуры составляет 8 ч. Затем следует нагрев до 200-220 °С, при котором удаляется большая часть связанной воды. Скорость нагрева 50 °С/ч. При этой температуре формы выдерживают до 12 ч. Затем следует нагрев до 380 °С с той же скоростью, чтобы разложить аммониевые соли. Выдержка при этой температуре 5 ч. Далее формы охлаждают при 100 °С их извлекают из печи и подготовляют к заливке.

При изготовлении гипсовых форм, подлежащих нагреву в автоклаве или вспениванием, ‘в смесь не вводят присадки, повышающие газопроницаемость, такие, как асбест, стеклянная вата. Они в данном случае излишни. Более того, при их использовании увеличивается шероховатость поверхности форм. В период тепловой обработки гипсовой формы она становится достаточно газопроницаемой для удаления влаги. Именно в этот период удаляется свободная и дигидратная вода. Полугидратная вода удаляется во время заливки металла в форму. Образующиеся пары благодаря высокой газопроницаемости формы удаляются через стенки без какого-либо повреждения формы.

Таким образом, тепловая обработка форм при нагреве в автоклаве или при вспенивании очень проста, и сами формы не так чувствительны к скорости нагрева. Тепловую обработку форм проводят при низких температурах, находящихся между эндотермическими пиками, обусловленными потерей дигидратной и полу-гидратной воды. При нормальных условиях эта температура находится в пределах 180-225 °С. В диапазоне этих температур формы (в зависимости от их величины) выдерживают 10- 18 ч. После охлаждения формы подготовляют к заливке.

Сравнительные испытания всех трех описанных способов, проведенные предприятием ZPS г. Готвальдов (ЧССР ), показали, что

газопроницаемость форм была в пределах 48-52 J. N. Р. Одинаковыми были также качество поверхности отливок и плотность металла непосредственно под литейной коркой.

Вспенивание форм требует точного выдерживания технологических параметров: давления, температуры и времени пребывания в автоклаве.

Для повышения газопроницаемости за счет разложения аммониевых солей необходима медленная и осторожная тепловая обработка форм. Объемную стабильность таких форм можно повысить присадкой 1% сульфата алюминия A12 3. Обработку гипсовых форм в автоклаве применяют в серийном производстве, а механическое вспенивание-в единичном.

Если необходимо иметь только определенную часть отливки с особо качественной поверхностью и жесткими допусками на размер, используют комбинированную форму. В песчаную форму вставляют или гипсовый стержень, или часть гипсовой формы.

Максимальная масса отливок из алюминиевых сплавов, которые можно получать в гипсовых формах, составляет 10-160 кг. Минимальная толщина стенки 1,5 мм, в особых случаях 0,55 - 1,0 мм.

Шероховатость поверхности в пределах от 60 до 80 RMS . Теплопроводность гипсовых форм относится к теплопроводности обычных песчаных форм как 0,65: 1,0, что необходимо учитывать, в частности, при литье свинцовистых бронз. Содержание свинца в таких бронзах должно быть не более 2,5%, а содержание углерода максимум 7%; при более высоком содержании свинца при охлаждении происходит его ликвация.


Для изготовления разовых литейных форм используют легко формуемый материал, без особого труда разрушаемый при извлечении готовой отливки, но достаточно прочный, чтобы противостоять силам, возникающим при заполнении полости формы расплавленным металлом. В практике применяют смеси песков, глины и воды; они удовлетворяют приведенным выше требованиям, дешевы и доступны. Приготовляют формовочные смеси, перемешивая песок с определенным количеством глины и воды. Глина служит связующим. Определенному количеству глины соответствует определенное количество влаги. Кроме глины, используют и другие связующие материалы.
Прочность смесей из песка, глины и воды в сыром состоянии объясняется способностью глинистых мелкодисперсных частиц при перемешивании с водой образовывать растворы, похожие на коллоидные, в которых действуют электростатические силы (рис. 48). Кроме этих сил, действуют силы поверхностного натяжения воды, сближающие частицы, а также силы межчастичного фрикционного сцепления песчинок при уплотнении формовочной смеси.


Для изготовления смесей применяют различные формовочные пески (природные смеси). По ГОСТ 2138-74 они разделяются на классы по химическому составу (в зависимости от примеси глины), группы и категории по зерновому составу (размеру песчинок). В табл. 7 приведены основные характеристики песков и глин, которые используют в цехах цветного литья.
Глины состоят из тонкодисперсных частиц алюмосиликатов: каолинита Al2O3*2SiО2*2Н2О, монтмориллонита Al2O3*4SiО2*H2O+nН2O (или бентонита). Различают глины (ГОСТ 3226-65) по их связующей способности (три сорта и класса) в сыром и высушенном состоянии. Прочносвязующие глины обеспечивают сырую прочность стандартных образцов (90 % песка, 10 % глины, 2,5-3,5 % влаги, сверх 100 %), равную 0,1 МПа и более при сжатии, а малосвязующие 0,05-0,08 МПа. В высушенном состоянии прочность соответственно равна ≥0,55 МПа и ≤0,35 МПа. Кроме того, различают три группы глин T1, T2, T3 - по термохимической устойчивости в зависимости от содержания легкоплавких примесей (Fe2O3, Na2O, CaO, сульфиды и др.).

Кроме песков на основе SiO2, для изготовления форм, обладающих повышенной способностью к поглощению тепла и ускоряющих затвердевание металла в них, применяют смеси, содержащие магнезит, циркон. На практике в формовочные смеси вводят также специальные добавки для предотвращения пригара их к металлу, повышения газопроницаемости, податливости и облегчения выбивки. К ним относятся угольная пыль, маршаллит (тонкоразмолотый кварц), мазут, органические добавки (опилки, мука и др.), спецприсадки (сера, борная кислота, фторборкислый алюминий, сода и др.).
Из формовочных материалов готовят рабочие смеси, непосредственно используемые для изготовления форм и стержней.
В литейных цехах применяют смеси, состав которых зависит от сплава, из которого будет отлита деталь; от массы отливки (мелкие, средние и крупные); от способа использования форм (заливка в сырье или сухие формы, т. е. предварительно высушенные); от характера использования (единые, облицовочные, наполнительные смеси), от вида исходных материалов (естественные или синтетические смеси). Естественные смеси готовят из песков, к которым глина примешана в природном состоянии, а в синтетические смеси глину вводят в виде самостоятельной добавки. Преимущество синтетических смесей состоит в том, что они имеют хорошие свойства при минимальном содержании глины и влаги.
Чтобы получить качественные отливки, необходимо использовать формовочные смеси с определенным комплексом свойств: прочность и пластичность, газопроницаемость, огнеупорность, теплофизические свойства.
У обычных формовочных смесей сырая прочность на сжатие составляет 0,01-0,1 МПа, сухая (на разрыв) 0,2-2 МПа. Вместе с тем смеси не должны быть очень прочными, так как для получения точного, четкого отпечатка формы они должны хорошо заполнять углубления на модели, т. е. быть текучими, пластичными. Хорошими считают смеси, которые при максимальной текучести (пластичности) обеспечивают высокую прочность. Прочность зависит от содержания глины - чем ее больше, тем смесь прочнее, но до определенного предела. Качественными считают смеси, которые имеют высокую прочность и пластичность при минимальном содержании глины и влаги.
При заливке формы металлом образуется большое количество пара и газов, которые должны легко удаляться через стенки формы, чтобы не попасть в затвердевающий металл. Поэтому необходимо, чтобы материал формы был газопроницаемым. Газопроницаемость зависит от размеров и формы зерен песка, количества глины и влаги, плотности набивки, толщины стенок формы и др. Чем крупнее песок, чем меньше глины и влаги, ниже плотность набивки и тоньше форма, тем газопроницаемость выше. Хорошие смеси должны иметь небольшую газотворность, т. е, при нагревании выделять малое количество газообразных продуктов, либо, в крайнем случае, выделять их после того, как на отливке образуется плотная корка металла.
Необходимо, чтобы смеси были огнеупорными, способными не расплавляться и не размягчаться под воздействием расплавленного металла. Для приготовления форм при цветном литье этому требованию удовлетворяет кварцевый песок, состоящий в основном из SiO2. Чем меньше в песке Al2O3, Na2O, K2O, CaCO3, тем выше огнеупорность Материал формы должен быть также химически нейтральным по отношению к оксидам, образующимся в металле, иначе возможно химическое взаимодействие оксидов металла и формы, например основных оксидов Cu2O, NiO, FeO с кислотным SiO2, с возникновением легкоплавких соединений, которые образуют на поверхности пригар.
Необходимо, чтобы материал формы имел хорошие теплоаккумулирующие свойства. После заливки металлом формы она должна быстрее отводить тепло от металла; благодаря этому отливка получается плотной, без газоусадочной пористости. Показателем теплоаккумулирующих свойств формы является коэффициент аккумуляции тепла bф = √λфсфРф Дж/(м2*ч1/2*К), где λф - коэффициент теплопроводности формы, Вт/(м*К); сф - удельная теплоемкость формы, Дж/(кг*К); рф - объемная масса формы, кг/м3.
Например, у сухих песчано-глинистых форм bф = 12/15, сырых 15-20, цирконовых 20-40, хромомагнезитовых 40-50, а у металлических чугунных 185 Дж/(м2*К*ч1/2).
При изготовлении форм для сложных ответственных отливок применяют различные смеси - массивные части выполняют из смесей с повышенным bф, а тонкостенные и прибыли с более низкими значениями bф, что обеспечивает направленность затвердевания.
Для цветного литья применяют различные типовые формовочные смеси из песков, глины и других добавок. По способу использования различают единые, облицовочные и наполнительные смеси. При машинной формовке чаще применяют единые смеси для изготовления всей формы. При изготовлении крупных форм поверхность модели облицовывают смесью, содержащей чистый песок и глину (чтобы огнеупорность поверхности формы, соприкасающейся с металлом, была выше), а остальную часть формы наполняют смесью, используя частично отработанную смесь. В результате форма получается более дешевой. Рабочие смеси состоят из 85-97 % оборотной смеси (т. е. бывшей в употреблении, но просеянной и очищенной) с добавкой 3-15 % свежих песков и глины.
Для смесей в производстве алюминиевых сплавов применяют пески П010, П0063, К016А, К010А (примерно 70-80 % полужирных песков и 20-30 % кварцевых). Смеси обладают сырой прочностью 0,04-0,07 МПа, влажностью 4,5-5,5 % и газопроницаемостью 40-60 см/мин. Примерно такой же состав и свойства у смесей для магниевого литья, но влажность их меньше (3,5-4,0 %); кроме того, к ним добавляют специальные присадки, предотвращающие или затрудняющие возгорание сплава в форме. Типичной при литье магниевых сплавов является присадка BM, которая представляет собой смесь мочевины, сернокислого алюминия, борной кислоты (при заливке металла в форму мочевина CO(NH2)2 разлагается с выделением аммиака NH3 и CO2); сернокислый алюминий Al2(SO4)3, способствующий образованию пленки MgSO4 на металле; борная кислота HBO3, переходящая при нагревании в борный ангидрит B2O3, который взаимодействует с магнием по реакции 3Mg+B2O3→3MgO+2В. Образующаяся на поверхности сплава пленка MgSO4 уплотняется бором, перешедшим в магний, и предотвращает дальнейшее его окисление. Защитное действие оказывает также сера, которая при соприкосновении с металлом сгорает до SO3. Этот тяжелый газ (тяжелее воздуха в 2,7 раза) разбавляет воздушную среду и делает ее менее реакционноспособной к металлу.
Для медных сплавов типовая рабочая смесь состоит на 85-95 % из оборотной и на 5-15 % из свежей смеси (в виде смеси песков К01А, К025А и П01А или TOlA). Рабочая смесь содержит 4,5-5,5 % влаги, обладает сырой прочностью 0,03-0,05 МПа, газопроницаемостью 30-50 см/мин. Смеси, предназначенные для изготовления форм (обычно для получения крупных отливок), подлежащих сушке при 280-400 °C, содержат повышенное количество глины (6-10 %) и влаги (до 8 %). Для изготовления разовых форм применяют также смеси со связующим в виде жидкого стекла в количестве 5-8 % (по массе). Эти смеси быстро твердеют при кратковременном подогреве до 200-300 С или при продувке их углекислым газом, благодаря чему существенно сокращается время изготовления форм и повышается прочность
Жидкостекольные смеси применяют также для изготовления стержней. Стержни, которые при заливке окружены со всех сторон (кроме знаков) жидким металлом и испытывают давление при его усадке, делают из более прочных смесей, чем формы. Для повышения прочности стержней в сухом состоянии используют специальные крепители или связующие добавки, которые вводят в количестве 0,5-5 % (по массе). После заливки под воздействием высоких температур крепитель выгорает или разлагается, связь между песчинками теряется, стержень не оказывает сопротивления отливке в момент усадки при затвердевании и легко выбивается при очистке отливки. Глину также применяют в качестве связующей добавки в стержневые смеси, но при нагревании она спекается, стержень становится неподатливым и с трудом выбивается. Как правило, глину используют совместно с другими связующими для придания смесям хорошей сырой прочности, так как ряд органических крепителей, придавая стержню высокую прочность после сушки (сухая прочность), не обеспечивает одновременно нужную сырую прочность. При недостаточной сырой прочности изготовленные стержни могут разрушаться при толчках, сотрясениях, деформироваться под действием собственной массы с искажением размеров и др.
Применяемые в литейных цехах крепители по характеру действия делятся на четыре основных вида.
1. Смеси растительных масел с различными растворителями, например оксоль: 55 % олифы и 45% уайт-спирита (особо чистый керосин); крепитель 4ГУ (50 % масла, 3 % канифоли и 47 % уайт-спирита); крепитель П и многие другие.
Связующее действие этих крепителей основано на химических и физических превращениях во время сушки, в результате которых жидкая пленка крепителя превращается в твердую эластичную, придающую прочность и податливость стержням. Крепители этой группы наиболее высококачественные но они дефицитны и дороги, поэтому их заменяют более дешевыми (2, 3 и 4-й групп).
2. Битумы (продукты отгонки нефти), пеки (продукты разгонки газогенераторных смол), фенолформальдегидные смолы, канифоль и др. Связующее действие их основано на расплавлении при нагреве с последующим твердением при остывании. Фенол-формальдегидные смолы (пульвербакелит ПК-104, СФ-015) широко применяют при прогрессивных способах изготовления тонкостенных (оболочковых) форм и стержней, изготовлении стержней в горячих ящиках. Ряд связующих на основе синтетических смол (фенолформальдегидная ОФ-1, фенолфурановая ФФ-1СМ, карбамиднофурановая КФ-90 и др.) обеспечивает упрочнение стержня без нагрева. Они затвердевают при вводе в смесь катализаторов (ортофосфорной кислота и др.). Такие смеси называются холоднотвердеющие (ХТС).
3. Декстрин (продукт разложения картофельного крахмала), сульфитный щелок (отходы бумажно-целлюлозного производства, состоящие из связующих, которые присутствуют в древесине, - лигнин, жиры и др.), являются водорастворимыми крепителями. При высыхании влага испаряется, концентрация крепителя повышается и связующие силы возрастают. Недостаток водорастворимых крепителей - гигроскопичность, т. е. способность адсорбировать влагу на воздухе и в форме.
4. Минеральные вещества, твердеющие во время выдержки при обычной температуре,- цемент, жидкое стекло и др. Применение жидкого стекла в качестве связующей добавки намного улучшила технологию литейного производства, так как отпала необходимость сушки формы и стержней в специальных сушилах. Жидкое стекло водный раствор силиката натрия (Na2O)m*(SiO2)n*(H2O)4 поставляется в виде сиропообразной жидкости в герметических емкостях. Его вводят в смеси, которые называют быстротвердеющими (ЖСС), в количестве 5-8 %. Стержни на жидком стекле для отвердения продувают CO2 или подвергают кратковременной сушке при 200 °C в течение 15-40 мин. При этом образуется гель кремниевой кислоты m*SiO2*kН2O, a Na2O превращается в Na2CO3. При последующем удалении влаги образуется золь SiO2, который скрепляет зерна песка в прочную массу. Чем меньше золь содержит влаги, тем прочнее стержень. Связующая способность жидкого стекла определяется его модулем M = (Si02/Na2O) 1,032, который колеблется от 2 до 3. Чем больше М, тем выше вяжущие свойства жидкого стекла. В литейном производстве применяют крепители с M = 2,1/2,6. Недостаток ЖСС - невысокая «живучесть» (при хранении твердеют).
В России с использованием жидкого стекла в качестве крепителя разработана новая технология изготовления форм и стержней с применением жидких самотвердеющих смесей (ЖСС), позволившая заменить процесс уплотнения смесей заливкой их в стержневые ящики и на модели. Смеси состоят из жидкого стекла (крепитель), поверхностно-активного вещества - пенообразователя (мылящее вещество), который придает текучесть смеси, отвердителя (феррохромовый шлак 2СаО*SiO2 в виде порошка) и наполнителя (песок и др.); все эти составляющие смешивают в определенных пропорциях. Принципиальная особенность ЖСС - их способность затвердевать одновременно по всему объему. Поэтому продолжительность затвердевания не зависит от размеров форм и стержней. Твердение начинается через 8-10 мин после заливки и заканчивается через 40-60 мин.
Для изготовления фасонных отливок из титана, циркония и их сплавов в качестве формовочного материала в основном применяют графит, так как SiO2, Al2O3, ZrO2 и другие огнеупорные материалы химически взаимодействуют с титаном. При литье по выплавляемым моделям используют электрокорунд (плавленая Al2O3 и ZrO2). Формы для титановых отливок либо изготовляют из куска графита, либо прессуют из графитовых смесей. Смеси состоят из порошка графита различной крупности (0,04-0,5 мм) и фенолфурфуроловой смолы в качестве крепителя. Их разбавляют этиловым спиртом или ацетоном и карбидообразующими добавками (двуокись титана, порошок металлического титана, аморфный бор и др.). Для улучшения смачиваемости зерен графита связующими вводят поверхностно-активные добавки, например нефтяные сульфокислоты, получаемые при обработке керосинового или дизельного дистиллята нефти серным ангидридом В отечественной практике для получения прочных графитовых оболочек применяют смесь из 93 % графитовой пыли, 3,7 % TiO2, 3 % порошка металлического титана и 0,3 % порошка бopa, которую перемешивают со смолой (0,5 кг порошка на 1 л разбавленной смолы).
Формовочные и стержневые смеси готовят в смесеприготовительных отделениях литейного цеха. Этот процесс состоит из следующих основных операций: сушки песка и глины, просеивания, размола (глины), распределения материалов по емкостям, дозирования, перемешивания составляющих, выдержки готовых смесей, разрыхления (аэрации) и транспортировки к рабочим местам формовки. Для сушки песка и глины при 200-250 °C до остаточной влажности 0,1-0,2 % применяют барабанные вращающиеся сушила, вертикальные многоподовые сушила с вращающимися скребками и отапливаемые газом или твердым топливом, установки для сушки в пневмопотоке и по принципу кипящего слоя. Просеивание материалов ведут во вращающихся полигональных ситах производительностью от 10 до 80 м3/ч и плоских ситах производительностью 5-40 м3/ч. Перед просеиванием отработанные смеси (используемые для приготовления рабочих смесей) размалывают на специальных вальцах, а перед поступлением в сито пропускают через магнитный сепаратор, который отделяет от земли железные предметы (каркасы и пр.). Кусочки цветных металлов при просеивании остаются в ситах и периодически выгружаются.
Составляющие смеси перемешивают в бегунах, представляющих собой металлическую чашу, в которой вращаются катки, расположенные вертикально (а) или горизонтально (б) (рис. 49). Вначале в чашу 1 загружают нужное количество песка и глины, затем включают бегуны-катки 2, с помощью которых перемешивают порошкообразные составляющие, смесь увлажняют и вводят связующие. Один замес обычно весит 0,3-1,5 т, перемешивание длится 10-20 мин. Затем смесь выгружают из бегунов и с помощью транспортеров собирают в большие бункера-отстойники, где выдерживают не менее 3 ч, чтобы влажная глина хорошо набухла и смесь приобрела высокую прочность и пластичность Стержневые смеси с легко высыхающими масляными крепителями лучше подавать к рабочим местам сразу, без выдержки. Каждую партию формовочной и стержневой смеси перед подачей к месту формовки проверяют на прочность, газопроницаемость и влагу. В современных цехах операция приготовления смесей механизирована и автоматизирована. Готовые смеси подают в формовочное отделение для изготовления литейных форм.

Для изготовления отливок разнообразных деталей и их элементов на современных литейных предприятиях используются полупостоянные и разовые литейные формы. В соответствии с условиями технологии литейного процесса, для изготовления таких литейных форм используются специальные смеси для литья, представляющие собой сочетание высокоогнеупорных веществ (асбест, шамот) с песчано-глинистыми составляющими. Компоненты, входящие в составы для литья, могут быть как природного, так и искусственного происхождения (синтетические). В результате смешения составляющих формовочных смесей в определенных пропорциях, готовые составы могут обладать заранее заданными свойствами и иметь нужную податливость, огнеупорность, прочность, формуемость, газопроницаемость и так далее.

Виды смесей

Формовочные смеси для литья в зависимости от характера использования делятся на несколько основных категорий:

  • Облицовочные смеси. Данный вид формовочных смесей предназначен для изготовления рабочего слоя литейной формы. Высокие физические и механические свойства таких смесей обеспечиваются повышенным процентом содержания исходных материалов для формовки (песка и глины);
  • Наполнительные смеси для литья. Данные формовочные составы для литья используются для наполнения формы, после того, как на модель была нанесена облицовочная смесь. Для приготовления такой смеси исходные формовочные материалы (глина и песок) перерабатываются совместно с остатками оборотной смеси;
  • Единая формовочная смесь для литья. Смесь такого типа представляет собой формовочный материал, объединяющий в себе свойства одновременно и наполнительной, и облицовочной смеси. Единые смеси используются на автоматических линиях в серийном и массовом изготовлении при машинной формовке. Долговечность таких смесей обеспечивается присутствием в составе глин с высокой связующей способностью и наиболее огнеупорных видов песков.

Состав формовочной смеси для литья

Химический состав, который может иметь формовочная смесь для литья, зависит от совокупности следующих факторов:

  • От рода используемого сплава и размеров отливки;
  • От способа формовки и вида литья (цветное литье, стальное или чугунное);
  • От характера производства и имеющихся в распоряжении производства технологических средств.

Также состав, который имеет формовочная смесь для литья, может различаться в зависимости от того, в каком состоянии она должна находиться перед заливкой. Формовочные смеси для сухих форм содержат в своем составе повышенное количество воды и глины. Кроме того, в состав таких смесей могут дополнительно вводиться такие выгорающие добавки, как торф или опилки. В составе формовочных смесей для сырых форм снижается процентное содержание оборотной смеси. Формовочные составы для литья металлов в подсушенные формы отличаются одновременным наличием и оборотных компонентов, и свежих материалов (глины и песка), и крепителей.

В прошлый раз (вы можете найти эту статью в ) я лил , т.е. вырезал модель из пенополистирола и просто засыпал песком. И некоторые из вас подметили, что к процессу я отнесся довольно небрежно. Все верно, целью было просто опробовать технологию и я совсем не заморочился с качеством отливки. Признаю это. В этот раз я постараюсь сделать все более аккуратно. Весь процесс с пояснениями есть на видео, но я так же распишу все сейчас и в текстовом формате. Поэтому, приятного просмотра и прочтения!

Многие кустарные источники пишут, что нужно смешать то-то и то-то «по вкусу», т.е. предлагают выяснять все опытным путем. Это неплохой для понимания, но долгий для получения результата процесс. Поэтому я нашел неплохой учебник-методичку по художественному литью в песок («Художественное литье: учебное пособие для учащихся средних профессионально-технических училищ» , Борис Никитич Зотов, 1982 г.). Я не претендую на какой-то профессионализм. Нет-нет! Это вообще моя первая отливка по технологии из этого учебника. Я тот еще кустарь, поэтому, все советы и обоснования ошибок от вас я приму с честью и буду рад, если вы поправите меня! Да и дочитал я лишь до части формовки смеси. Уже после отливки выяснил пару моментов по расплаву и термической обработки отливки…

И так, поехали.

Из инструментов и прочего нам понадобится:

  • емкость для смешивания всего и вся;
  • мешалка (тут можно обойтись и руками, но если она у вас есть- хорошо);
  • заранее изготовленные рамки для формовки, чтобы половинки формы ровно стыковались без смещения;
  • печка;
  • сито для просеивания песка и глины;
  • мерный стаканчик, либо глаз-алмаз;
  • кисточка для нанесения талька и очистки формы;
  • модель, которую будем отливать;
  • пара отрезков труб или банок или чего угодно диаметром 80-100 мм и высотой 50-80 мм (для формовки литников, тут так же можно обойтись и руками- слепить бублик, но с банками будет аккуратнее и проще =)
  • тонкостення трубка диаметром 20+- мм. для формовки литников;
  • слесарный для обработки отливки;
    (список собрался довольно емкий, но все инструменты пустяковые и большая их часть может найтись в хозяйстве).

Необходимые в процессе материалы:

  • сам под заливку (в моем случае алюминий);
  • песок кварцевый (речной тоже подойдет, но форма будет менее прочной);
  • бентонитовая глина;
  • вода;
  • тальк \ угольная пыль \ графит.

Для изготовления формовочной смеси нам понадобится:

  • просеянный кварцевый песок в количестве, чтобы можно было заполнить нашу форму и литники. Примем песок как целую часть- единица (1) или 100% для удобства расчета;
  • бентонитовая глина. Ее нам понадобится 0.15-0.20 (15-20%) от общей массы песка;
  • вода. Влажность смеси должна оставлять около 0.06 (6%) от общей массы песок+глина (да-да, брал песок за целую часть, а теперь уже целая часть это песок+глина).

Сперва смешиваем просеянный песок с просеянной глиной.

Хорошо смешиваем на сухую. Иначе, если делать это одновременно с водой, вы намучаетесь в попытке разбить комки сырой глины.

Для увлажнения смеси удобно пользоваться распылителем. Он позволит равномерно распределить влагу, но если его нет, то просто добавляйте воды по чуть-чуть.

Уделите достаточно времени для перемешивания смеси. Она должна получиться однородной и быть полностью смочена водой (тех 6 процентов с лихвой хватит на это)

После того, как все смешно, наша смесь почти готова к формовке! Нужно лишь дать ей настояться, для того чтобы влага распределилась равномерно. Оставьте в покое смесь на 1 час или даже 2. Этим эта смесь и хороша — она проста в изготовлении и никуда спешить не нужно и в случае несоблюдения пропорций, всегда это можно исправить досыпав недостающей части песка или глины.

По прошествии часа, смесь значительно изменяет свои свойства в лучшую сторону- меньше липнет к рукам и хорошо сохраняет форму, если сжать горстку в кулак (Это, кстати, народный способ проверить качество смеси- возьмите горстку получившейся смеси в руку и сожмите ее. А когда разожмете руку, то смесь должна повторить изгибы пальцев и ладони. После чего попробуйте сломать ее пополам. Если комок сломается ровно пополам и не рассыпется — это то. что нам и нужно)

Теперь переходим к процессу формовки.

Устанавливаем заготовленную рамку на ровную поверхность и насыпаем смесь в форму. Не спешите засыпать все и сразу. Насыпьте треть и утрамбуйте ее, чтобы песок заполнил все уголки формы. Я сперва делаю песчаное дно — засыпаю песок, трамбую его, а потом засыпаю форму целиком без трамбовки и вдавливаю в рыхлый песок модель. Перед установкой модели, неплохо было бы ее посыпать тальком, чтобы она не прилипала к смеси. Пальцами утрамбовываю по периметру и досыпаю по необходимости смесь. Было бы проще, если бы модель делилась пополам, но это другая история. У нас есть конкретный пример. Поэтому и последовательность именно такая. Трамбовать удобно небольшим деревянным бруском — он достаточно прочный и тяжелый для комфортного процесса. После чего этим же бруском выравниваем поверхность. Модель должна засыпаться ровно по центру,так как имеет скругления. Чтобы при ее вынимании форма не разрушилась, пришлось немного напрячься, но я справился. Справитесь и вы!

Когда первая половина формы утрамбована и выровнена, постукивая тем же бруском по форме расшатываем ее слегка и пробуем вынимать. Все извлеклось хорошо, а форма отпечаталась как надо? Хорошо, тогда время вернуть модельку в форму и пройтись кисточкой с тальком или графитом по всей площади поверхности формы и модельке в том числе. Это необходимо для того, чтобы вторая половина формы не прилипла к модели и нижней половинке формы.

Вторую часть трамбовать проще — просто подсыпаем песок и равномерно трамбуем, пока не заполним все целиком.

Важно помнить, что если трамбовка будет недостаточной и смесь останется рыхлой, то она разрушится еще до литья или в процессе заливки. Если трамбовать чрезмерно сильно, то песок спрессуется и газопроницаемость формы будет плохой, что может привести к браку отливки, так как пары и газы будут плохо удаляться из формы в процессе литья.

Аккуратно снимаем верхнюю половину и смотрим что у нас получилось. С первой половинки моделька должна выходить хорошо (ведь мы ее уже вынимали). Со второй половинки точно так же, с постукиваниями, вынимаем модель. Осматриваем результат и если он нас устраивает, значит у нас получилось и осталось совсем немного перед отливкой.

Теперь нужно проделать заливные отверстия в форме. С этим отлично справится тонкостенная трубка (я использовал трубу от пылесоса). У меня немного не хватило высоты рамок и часть модели виднелась снаружи. Это место и стало одним из двух литников.

Так же важно сделать песочные воронки, через который будет поступать металл в форму. Они нужны для удобства литья, а так же для того, чтобы при остывании подпитывать отливку металлом при усадке. На некоторых сплавах усадка особенно заметна.

Воронки можно формовать как руками, так и используя подручные формы (я использовал кофейные банки и все ту же трубку от пылесоса).

Процесс формовки закончился. И форма пригодна для литья. Убираем модель, продуваем песчинки, которые могут попасть в отливку и собираем форму на место, где будет проходить заливка.

Дело за малым — разжечь печь, расплавить алюминий и залить.


Так как основной объем статьи посвящен именно формовки, тут я пройдусь совсем коротенько. В видео я сказал, что нужно добавлять соды и соли, так делают все кустари. Но, один из зрителей на канале поправил меня и обосновал свой ответ. Поэтому спешу поправиться, сода в расплаве не нужна. В последующих отливках я ощутил разницу. Без соды металл залился с меньшим количеством пор и значительно лучше обрабатывался (не засорял фрезы). Поэтому, когда алюминий в тигле расплавится, нужно добавить соли, чтобы металл очистился от шлаков. Всю грязь собравшуюся на поверхности я собрал ложкой и залил металл в форму. Через небольшой промежуток времени я вынул отливку.