Котельная с водогрейными котлами. Котловой блок управления: мой выбор

Общая часть

Котельные с водогрейными котлами могут сооружаться для отпуска теплоты только в виде горячей воды при сжигании твер­дого, газообразного и жидкого топлива. Жидкое топливо обычно поступает в автоцистернах, т. е. в разогретом состоянии. Эти котельные могут работать как на закрытую, так и на открытую систему теплоснабжения.

Основной целью расчета любой тепловой схемы котельной яв­ляется выбор основного и вспомогательною оборудования с оп­ределением исходных данных для последующих технико-экономи­ческих расчетов.

При разработке и расчете тепловых схем котельных с водо­грейными котлами необходимо учитывать особенности их конструкции и эксплуатации.

Рис.1Схемы включения деаэраторов: а- вакуумного; б-атмосферного; в - атмосферного с охладителем деаэрированной воды

/ _ водоструйный эжектор; 2 - охладитель выпара; 3 - водо-водяной теплообменник; 4 - химически очищенная вода; 5 - деаэратор; 6 - горячая вода из прямой линии; 7 - охладитель деаэрированной воды; 8 - бак деаэрированной воды; 9 - подпиточный насос

Надежность и экономичность водогрейных котлов зависит от постоянства расхода воды через них, который не должен снижаться относительно установленного заводом-изгото- вителем. Во избежание низкотемпературной и сернокислотной коррозии конвективных поверхностей нагрева температура воды на входе в котел при сжигании топлив, не содержащих серу, дол­жна быть не менее 60 °С, малосернистых топлив не менее 70 °С и высокосернистых топлив не менее 110 °С. Для повышения тем­пературы воды на входе в водогрейный котел при температурах воды ниже указанных устанавливается рециркуляционный насос. \/ В котельных с водогрейными котлами часто устанавливаются вакуумные деаэраторы. Однако вакуумные деаэраторы требуют при эксплуатации тщательного надзора, поэтому в ряде котельных предпочитают устанавливать деаэраторы атмосферного типа.

Применяемые схемы включения вакуумных деаэраторов и де­аэраторов атмосферного типа показаны на рис. 1.

На рис. 1, а показан деаэратор, работающий при абсолют­ном давлении 0,03 МПа. Вакуум в нем создается водоструйным эжектором. Подпиточная вода после химводоочистки подогрева­ется в водо-водяном подогревателе горячей водой из прямой ли­нии с температурой 130-150 °С. Выделившийся пар борботирует поток деаэрируемой воды и направляется в охладитель вы­пара. Температура воды после деаэратора 70 °С.


На рис. 1, б показана схема деаэрации при давлении 0,12 МПа, т. е. выше атмосферного. При этом давлении темпера тура воды в деаэраторе 104 °С. Перед подачей в деаэратор хими­чески очищенная вода предварительно подогревается в водоводяном теплообменнике.


На рис. 1, в показана аналогичная схема деаэрации подпиточной воды, отличающейся от описанной тем, что после деаэрационной колонки вода поступает в охладитель деаэрированной воды, подогревая химически очищенную воду. Затем химически очищенная вода направляется в теплообменник, установленный перед деаэратором. Температура воды после охладителя деаэри­рованной воды обычно принимается равной 70 °С.

Перед расчетом тепловой схемы котельной, работающей на закрытую систему теплоснабжения, следует выбрать схему при­соединения к системе теплоснабжения местных теплообменников, приготовляющих воду для нужд горячего водоснабжения. В на­стоящее время в основном применяются три схемы присоединения местных теплообменников, показанные на рис. 2.

На рис. 2, а показана схема параллельного присоединения местных теплообменников горячего водоснабжения с системой отопления потребителей. На рис. 2, б, в показаны двухступен­чатая последовательная и смешанная схемы включения местных теплообменников горячего водоснабжения. В соответствии со СНиП 11-36-73 выбор схемы присоединения местных теплообменников горячего водоснабжения производится в зависимости от отношения максимального расхода теплоты на горячее водоснабжение к максимальному расходу теплоты на отопление. При Q гв / Q о ≤0 ,06 присоединение местных тепло­обменников производится по двухступенчатой последовательной схеме; при 0,6 < Q гв / Q о ≤1,2 - по двухступенчатой смешан­ной схеме; при Q гв / Q о ≥1.2-по параллельной схеме. При двухступенчатой последовательной схеме присоединения местных теплообменников должно предусматриваться переключение тепло­обменников на двухступенчатую смешанную схему.

Расчет тепловой схемы котельной базируется на решении уравнений теплового и материального баланса, составляемых для каждого элемента схемы. Увязка этих уравнений производится в конце расчета в зависимости от принятой схемы котельной. При расхождении предварительно принятых в расчете величин с по­лученными в результате расчета более чем на 3 % расчет следует повторить, подставив в качестве исходных данных полученные зна­чения.

Расчет тепловой схемы котельной с водогрейными котлами, работающей на закрытую систему теплоснабжения для трех режимов работы котельной

Котельная предназначена для тепло­снабжения жилых и общественных зданий на нужды отопления, вентиляции и горячего водоснабжения. Котельная расположена в г. и работает на малосернистом мазуте. Расчет в соот­ветствии со СНиП 11-35-76 ведется для трех режимов: максималь­но-зимнего, наиболее холодного месяца и летнего. Для горячего водоснабжения принята двухступенчатая последовательная схема подогрева воды у абонентов. Деаэрация химически очищенной воды производится в деаэраторе при давлении 0,12 МПа. Тепловые сети работают по температурному графику 150/70. Основные исходные и принятые для расчета данные приведены в задании на курсовую работу.

При расчете тепловой схемы в нижеуказанной последователь­ности определяются:

1.Коэффициент снижения расхода теплоты на отопление и вентиляцию

К ов =

2.Температура воды в подающей линии на нужды отопления и вентиляции для режима наиболее холодного месяца

t 1 = 18 + 64,5 К ов 0,8 + 67,5 К ов = 115.077

3.Температура обратной сетевой воды после систем отопления и вентиляции для режима наиболее холодного месяца

t 2 = t 1 - 80К ов = 58.197

4.Отпуск теплоты на отопление и вентиляцию для максимально-зимнего режима Q О.В = Q о +Q В =42+6.7=48.7

для режима наиболее холодного месяца

Q О.В = (Q о +Q В) К ов = (42+67)*0.711=34.625

5.Суммарный отпуск теплоты на нужды отопления, вентиля­ции и горячего водоснабжения:

8.Тепловая нагрузка подогревателя второй ступени для режима наиболее холодного месяца:

Q 11 г.в = G потр г.в - Q 1 г.в =12-5.24=6.76МВт

9.Расход сетевой воды на местный теплообменник второй ступени, т. е. на горячее водоснабжение, для режима наиболее холодного месяца:

10.Расход сетевой воды на местный теплообменник для лет­него режима:

G л г.в =

11. Расход сетевой воды на отопление и вентиляцию:

для максимально-зимнего режима

для режима наиболее холодного месяца

G о.в = =523.13 т/ч

12. Расход сетевой воды на отопление, вентиляцию и горячее водоснабжение: для максимально- зимнего режима

G вн = G о.в + G г.в =523.52+0=523.52

для режима наиболее холодного месяца

G вн = G о.в + G г.в = 523.52+102.20=625.72

для летнего режима

G вн = G о.в + G г.в = 0+140.72=140.72

13. Температура обратной сетевой воды после внешних потребителей:

t под обр = t 2 - 70 – =28.47

для режима наиболее холодного месяца

t под обр = t 2 - 58.197 –

для летнего режима

t под обр = t 1 - t 1 –

14. Расход подпиточной воды для восполнения утечек в тепловой сети внешних потребителей:

для максимально - зимнего режима

G ут = 0,01К тс G вн =0.01*1.8*523.52=9.42 т/ч

для режима наиболее холодного месяца

G ут = 0,01К тс G вн = 0.01*1.8*625.72=11.26 т/ч

для летнего режима

G ут = 0,01К тс G вн =0.01*2*140.72=2.81 т/ч

15. Расход сырой воды, поступающей на химводоочистку:

для максимально - зимнего режима

G с.в = 1,25 G ут = 1.25*9.42=11.77 т/ч

для режима наиболее холодного месяца

G с.в = 1,25 G ут =1.25*11.26=14.07 т/ч

для летнего режима

G с.в = 1,25 G ут = 1.25*13.28=16.6 т/ч

16. Температура химически очищенной воды после охладителя деаэрированной воды:

для максимально - зимнего режима

t II х.о.в = t I х.о.в = 20=48.53

для режима наиболее холодного месяца

t II х.о.в = t I х.о.в, = 20=54.10

для летнего режима

t II х.о.в = t I х.о.в = 20=60.22

17. Температура химически очищенной воды, поступающей в деаэратор:

для максимально - зимнего режима

t д х.о.в = t II х.о.в = 48.53=67.23

для режима наиболее холодного месяца

t д х.о.в = t II х.о.в = 54.10=72.80

для летнего режима

t д х.о.в = t II х.о.в = 60.22=78.92

18. Проверяется температура сырой воды перед химводоочисткой:

для максимально - зимнего режима

t I х.о.в = t с.в = 5=20.81

для режима наиболее холодного месяца

t I х.о.в = t с.в, = 15=18.2

для летнего режима

t I х.о.в = t с.в 15=16.5

19. Расход греющей воды на деаэратор:

для максимально - зимнего режима

G гр д = =1.60 т/ч

для режима наиболее холодного месяца

G гр д = = =2.46 т/ч

для летнего режима

G гр д = = =0.13 т/ч

20. Проверяется расход химически очищенной воды на подпитку тепловой сети:

для максимально - зимнего режима

G х.о.в = G ут - G г.в д = 9.42-1.60=7.82 т/ч

для режима наиболее холодного месяца

G х.о.в = G ут - G г.в д =11.26-2.46=8.8 т/ч

для летнего режима

G х.о.в = G ут + G г.в д = 2.81-0.13=2.67 т/ч

21. Расход теплоты на подогрев сырой воды:

для максимально - зимнего режима

Q с.в = 0,00116 = 0,00116

для режима наиболее холодного месяца

Q с.в = 0,00116 =0,00116

для летнего режима

Q с.в = 0,00116 = 0,00116

22. Расход теплоты на подогрев химически очищенной воды:

для максимально - зимнего режима

Q х.о.в = 0,00116 = 0,00116

для режима наиболее холодного месяца

Q х.о.в = 0,00116 = 0,00116

для летнего режима

Q х.о.в = 0,00116 = 0,00116

23. Расход теплоты на деаэратор:

для максимально - зимнего режима

Q д = 0,00116 = 0,00116

для режима наиболее холодного месяца

Q д = 0,00116 = 0,00116

для летнего режима

Q д = 0,00116 =0,00116

24. Расход теплоты на подогрев химически очищенной воды в охладителе деаэрированной воды:

для максимально - зимнего режима

Q охл = 0,00116 = 0,00116

для режима наиболее холодного месяца

Q охл = 0,00116 = 0,00116

для летнего режима

Q охл = 0,00116 = 0,00116

25. Суммарный расход теплоты, который необходимо получить в водогрейных котлах:

для максимально - зимнего режима

∑Q = Q +Q с.в +Q х.о.в +Q д - Q охл =60.7+0.22+0.17+0.15-0.25=60.99 МВт

для режима наиболее холодного месяца

∑Q = Q +Q с.в +Q х.о.в +Q д - Q охл = 53.3+0.21+0.19+0.23-0.37=53.56

для летнего режима

∑Q = Q +Q с.в +Q х.о.в +Q д - Q охл =9+0.02+0.05+0.007-0.13=8.94 МВт

26.Расход воды через водогрейные котлы:

для максимально - зимнего режима

G к = =

для режима наиболее холодного месяца

G к = =

для летнего режима

G к = =

27.Расход воды на рециркуляцию:

для максимально - зимнего режима

G рец = =

для режима наиболее холодного месяца

для летнего режима

28. Расход воды по перепускной линии:

для максимально - зимнего режима

G пер = =

для режима наиболее холодного месяца

для летнего режима

29. Расход сетевой воды от внешних потребителей через обратную линию:

для максимально - зимнего режима

G обр = G вн - G ут = 523.52-9.42=514.1 т/ч

для режима наиболее холодного месяца

G обр = G вн - G ут = 625.72-11.26=614.46 т/ч

для летнего режима

G обр = G вн - G ут = 140.72-2.81=137.91 т/ч

30. Расчетный расход воды через котлы:

для максимально - зимнего режима

G к ׳ = G вн + G гр под + G рец – G пер =523.52+5+224.04-0=752.56 т/ч

для режима наиболее холодного месяца

G к ׳ = G вн + G гр под + G рец – G пер = 625.72+5+111.20-220.37=521.55

для летнего режима

G к ׳ = G вн + G гр под + G рец – G пер = 140.72+0.7+81.37-66.30=154.49

31. Расход воды, поступающей к внешним потребителям по прямой линии:

для максимально - зимнего режима

G ׳ = G к ׳ - G гр д – G гр под - G рец + G пер = 752.56-1.60-224.04+0+5=531.9

для режима наиболее холодного месяца

G ׳ = G к ׳ - G гр д – G гр под - G рец + G пер = 521.55-2.46-111.20+220.37+5=633.26

для летнего режима

G ׳ = G к ׳ - G гр д – G гр под - G рец + G пер = 156.49-0.133-81.37+66.30+0.7=141.98

32. Разница между найденными ранее и уточненным расходом воды

внешними потребителями:

для максимально - зимнего режима

100% = 100%=1.60

для режима наиболее холодного месяца

100% = 100%=1.20

для летнего режима

100% = 100%=0.89

При расхождении, меньшем 3%, расчет считается оконченным.

Сводные данные результатов расчета тепловой схемы при­ведены в таблице.


.

Физическая Обо­ Номер Значение величины при характерных режимах работы котельной
величина зна­ чение формулы макси­ мально- зимнем наиболее холодного месяца лет­ нем
Коэффициент снижения расхода теплоты на отопление и вентиля­цию Ко.в (1) 0.7
Температура воды в подающей линии на нужды отопления и вен­тиляции, °С t 1 (2) 115.07
Температура обратной сетевой воды после систем отопления и вен­тиляции, °С t 2 (3) 58.1
после систем отопления и вен­тиляции, °С Отпуск теплоты на отопление и вентиляцию, МВт Q о.в (4) 48.7 34.6
Суммарный отпуск теплоты на отопление, вентиляцию, горячее водоснабжение, МВт Q (5) 60.7 53.3
Расход воды в подающей линии на отопление, вентиляцию и горя­чее водоснабжение, т/ч G вн (12) 523.52 625.72 140.72
Температура обратной воды по­сле внешних потребителей, °С (13) 28.47 50.85 56.12
Расход подпиточной воды для восполнения утечек в теплосети внешних потребителей, т/ч G ут (14) 9.42 11.26 2.81
Количество сырой воды, посту­пающей на химводоочистку, т/ч G с.в (15) 11.77 14.07 16.6
Температура химически очи­щенной воды после охладителя деаэрированной воды, °С (16) 48.53 54.10 60.22
Температура химически очищен­ной воды, поступающей в деаэра­тор, °С (17) 67.23 72.80 78.92
Расход греющей воды на деаэ­ратор, т/ч Суммарный расход теплоты, необходимый в водогрейных котлах, МВт Расход воды через водогрейные котлы, т/ч G гр д (19) 1.60 2.46 0.134
∑Q (25) 60.9 53.5 8.9
G к (26) 655.6 575.7 153.8
Расход воды на рециркуляцию, т/ч Расход воды по перепускной линии, т/ч (10.31)
G рец G пер (27) (28) 224.04 111.20 220.3 81.37 66.3
Расход воды через обратную линию, т/ч G обр (29) 514.1 614.4 137.9
Расчетный расход воды через котлы G к ׳ (30) 752.2 521.5 156.4

Сводная таблица расчета тепловой схемы котельной с водогрейными котлами

Принципиальная тепловая схема (ПТС) котельной с паровыми котлами для потребителей пара и горячей воды показана на рис. 8.

Паровые котельные чаще всего предназначены для одновременного отпуска пара и горячей воды, поэтому в их тепловых схемах имеются установки для подогрева горячей воды.

Обычно устанавливаются паровые котлы низкого давления 14 ата, но не выше 24 ата.

Сырая вода поступает из водопровода с напором в 30–40 м. вод. ст. Если напор сырой воды недостаточен, предусматривают установку насосов сырой воды 5.

Сырая вода подогревается в охладителе непрерывной продувки паровых котлов 11 и в пароводяном подогревателе сырой воды 12 до температуры 20-30 ºС. Далее вода проходит через водоподготовительную установку (ВПУ), и часть ее направляется в подогреватель химически очищенной воды 13, часть проходит через охладитель выпара деаэратора 4 и поступает в деаэратор питательной воды (ДПВ) 2. В этот деаэратор направлены также потоки конденсата и пар после редукционно-охладительной установки (РОУ) 17 с давлением 1,5 ата для подогрева деаэрируемой воды до 104 0 С. Деаэрированная вода при помощи питательного насоса (ПН) 6 подается в водяные экономайзеры котла и к охладителю РОУ. Часть выработанного котлами пара редуцируется в РОУ и расходуется для подогрева сырой воды и деаэрации.

Рис. 8. Принципиальная тепловая схема котельной с паровыми котлами

1– котел паровой, 2 – деаэратор питательной воды (ДПВ), 3 – деаэратор подпиточной воды, 4 – охладитель выпара, 5 – насос сырой воды, 6 – насос питательный (ПН), 7 – насос подпиточный, 8 – насос сетевой (СН), 9 – насос конденсатный (КН), 10 – бак конденсатный, 11 – охладитель продувочной воды (ОПВ), 12 – подогреватель сырой воды, 13 – подогреватель хим. очищенной воды (ПХОВ), 14 – охладитель подпиточной воды, 15 – охладитель конденсата, 16 – подогреватель сетевой воды, 17 – редукционно-охладительная установка (РОУ), 18 – сепаратор непрерывной продувки, 19 – продувочный колодец, ВПУ – водоподготовительная установка.

Вторая часть потока хим. очищенной воды подогревается в подогревателе 14, частично в охладителе выпара 4 и направляется в деаэратор подпиточной воды для тепловых сетей 3. Вода после этого деаэратора проходит водо-водяной теплообменник 14 и подогревает хим. очищенную воду. Подпиточным насосом 7 вода подается в трубопровод перед сетевыми насосами 8, которые прокачивают сетевую воду сначала через охладитель конденсата 15 и затем через подогреватель сетевой воды 16, откуда вода идет в тепловую сеть.



Деаэратор подпиточной воды 3 также использует пар низкого давления после РОУ. При закрытой системе теплоснабжения расход воды на подпитку тепловых сетей обычно незначителен. В этом случае довольно часто не выделяют отдельного деаэратора для подготовки подпиточной воды тепловых сетей, а используют деаэратор питательной воды паровых котлов.

На приведенной схеме предусматривается использование теплоты непрерывной продувки паровых котлов. Для этой цели устанавливают сепаратор непрерывной продувки 18, в котором вода частично испаряется за счет снижения ее давления от 14 до 1,5 ата. Образующийся пар отводится в паровое пространство деаэратора, горячая вода направляется в водо-водяной теплообменник сырой воды 11. Охлажденная продувочная вода сбрасывается в продувочный колодец.

Непрерывная продувка обеспечивает равномерное удаление из котла накопившихся растворенных солей и осуществляется из места наибольшей их концентрации в верхнем барабане котла. Периодическая продувка применяется для удаления шлама, осевшего в элементах котла, и производится из нижних барабанов и коллекторов котла через каждые 12-16 часов. Иногда предусматривают подачу продувочной воды для подпитки закрытых тепловых сетей. Подпитка тепловых сетей продувочной водой допускается только в том случае, когда общая жесткость сетевой воды не превышает 0,05 мг-экв/кг.

ПТС котельной для открытых систем теплоснабжения отличается от приведенной только установкой дополнительного деаэратора для деаэрации подпиточной воды тепловых сетей и установкой баков-аккумуляторов.

Конденсат от пароводяных подогревателей под давлением греющего пара во всех случаях следует направлять в ДПВ, минуя конденсатные баки 10 и насосы 9. При открытых системах теплоснабжения для деаэрации подпиточной воды устанавливают, как правило, атмосферные деаэраторы. Использование продувочной воды котлов в качестве подпиточной для открытых систем не допускается. Температура питательной воды после деаэратора 104 °С. Температура возвращаемого с производства конденсата 80–95 °С.



Принципиальная тепловая схема котельной с водогрейными котлами для закрытых систем теплоснабжения

ПТС котельных с водогрейными котлами для закрытых систем теплоснабжения показана на рис. 9.

Вода из обратной линии тепловых сетей с небольшим напором 20–40 м. вод. ст. поступает к сетевым насосам 2. Туда же подводится вода от подпиточных насосов 5, компенсирующая утечки волы в тепловых сетях. К насосу 2 подается и горячая сетевая вода, теплота которой частично использована в теплообменниках для подогрева хим. очищенной воды 8 и сырой воды 7.

Для обеспечения температуры воды на входе в котел, заданной по условиям предупреждения коррозии, в трубопровод за сетевым насосом 2 подают необходимое количество горячей воды, вышедшей из водогрейных котлов 1. Вода подается рециркуляционным насосом 3.

При всех режимах работы тепловой сети, кроме максимально зимнего, часть воды из обратной линии после насосов 2, минуя котлы, подают по линии перепуска в количестве G пер в подающую магистраль, где вода, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей.

Добавка хим. очищенной воды подогревается в теплообменниках 9, 8, 11 и деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из баков 6 забирает подпиточный насос 5 и подает в обратную линию.

Для сокращения расхода воды на рециркуляцию ее температура на выходе из котлов поддерживается, как правило, выше температуры воды в подающей линии теплосети. Только при расчетном максимально зимнем режиме температура воды на выходе из котлов и в подающей линии будет одинаковой.

Для закрытых систем даже в мощных водогрейных котельных можно обойтись одним деаэратором подпиточной воды с невысокой производительностью. Уменьшается также мощность подпиточных насосов 5 и оборудование ВПУ, снижаются требования к качеству подпиточной воды по сравнению с открытыми системами.

Недостаток закрытых систем – некоторое удорожание оборудования абонентских узлов горячего водоснабжения.

Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества проходящей через них воды. Расход воды должен быть постоянным, независимо от колебаний тепловых нагрузок. Поэтому регулирование отпуска тепловой энергии в сеть необходимо осуществить путем изменения температуры воды на выходе их котлов G пер.

Для уменьшения интенсивности наружной коррозии трубных поверхностей стальных водогрейных котлов необходимо поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов.

Минимальная допустимая температура на входе в котлы рекомендуется следующая: при работе на природном газе – не ниже 60 °С; при работе на малосернистом мазуте – не ниже 70 °С; при работе на высокосернистом мазуте – не ниже 110°С. Так как температура обратной сетевой воды почти всегда ниже 60 °С в тепловых схемах предусматривается линия рециркуляции.

Для определения температуры воды в тепловых сетях для различных расчетных температур наружного воздуха строятся графики, разработанные теплоэлектропроектом. Например, из такого графика видно, что при температурах наружного воздуха +3 ºС и выше вплоть до конца отопительного сезона температура прямой сетевой воды постоянна и равна 70 0 С.

Среднечасовой расход в сутки теплоты на горячее водоснабжение обычно составляет 20% общей теплопроизводительности котельной:

3 % – потери наружных тепловых сетей;

3 % – расходы на собственные нужды от установленной теплопроизводительности котельной;

0,25 % – утечка из тепловых сетей закрытых систем;

0,25 % – объем воды в трубах тепловых сетей.

Рис. 9. Принципиальная тепловая схема котельной с водогрейными котлами для закрытой системы теплоснабжения

1 – котел водогрейный, 2 – насос сетевой (СН), 3 – насос рециркуляции, 4 – насос сырой воды (НСВ), 5 – насос подпиточной воды, 6 – бак подпиточной воды, 7 – подогреватель сырой воды, 8 – подогреватель хим. очищенной воды (ПХОВ), 9 – охладитель подпиточной воды, 10 – деаэратор, 11 – охладитель выпара, 12 – водоподготовительная установка (ВПУ).

К атегория: Монтаж котлов

Схемы котельных установок

На тепловой схеме котельной условными графическими изображениями показывают основное и вспомогательное оборудование, связанное линиями трубопроводов для транспортирования пара или воды. Тепловые схемы могут быть принципиальные, развернутые и рабочие или монтажные.

Принципиальная тепловая схема содержит лишь главное оборудование и основные трубопроводы без арматуры.

На развернутую схему наносят все оборудование котельной и все трубопроводы, включая арматуру и различные вспомогательные устройства. Часто развернутую схему разделяют на самостоятельные технологические части по функциональному признаку, например, схема водоподготовки, схема деаэрационно-питательной установки, схема дренажей, схема продувки паровых котлов и т. п.

Рабочую, или монтажную, схему выполняют с указанием отметок расположения трубопроводов, размеров, марок стали, способов креплений, массы оборудования, деталей и других необходимых сведений.

Принципиальная тепловая схема котельной с водогрейными котлами изображена на рис. 2. Вода из обратной линии тепловых сетей поступает к сетевым насосам. К ним же подпиточ-ными насосами из бака подводится вода, компенсирующая потери в сетях. Для поддержания заданной температуры воды перед котлами в трубопровод за насосом подают необходимое количество горячей воды, вышедшей из котлов. С помощью перепуска между обратной и подающей линиями регулируется температура воды, идущей в сеть. Сырая вода, пройдя подогреватель, водоподготовительную установку ВПУ, подогреватель, охладители и деаэратор, подается на подпитку тепловой сети.

Рис. 1. Принципиальная тепловая схема котельной с водогрейными котлами: 1 - водогрейный котел, 2.5 - насосы, 3 - рециркуляционный насос, 4 - насос сырой воды, 6 - бак подпиточной воды, 7 - подогреватель сырой воды, 8 - охладитель подпиточной воды. 9-подогреватель химочищенной воды, 10 - вакуумный деаэратор, 11- охладитель выпара, 12 - регулирующий клапан; ВПУ - водоподготовительная установка

Рис. 4. Схема котельной установки с паровым вертикально-водотрубным котлом, работающим на твердом топливе: 1 - конвейер, 2 - барабан котла, 3 - запорная задвижка, 4-выходная камера пароперегревателя, 5 - фестон, 6 - пароперегреватель, 7 - экономайзер, 8 - топочные поверхности нагрева, 9 - воздухоподогреватель, 10- золоуловитель, 11—- дымовая труба, 12- дымосос, 13 - вентилятор, 14 - шлаковый бункер, 15-насос, 16-химводо-очистка, 17-решетка, 18-питатель, 19 - деаэратор, 20- бункер угля, 21, 22 - трубы

Технологическая схема котельной установки с паровым вертикально-водотрубным котлом, работающим на твердом топливе, изображена на рис. 3. Ленточный конвейер подает подготовленное твердое топливо в расходный бункер, откуда оно через питатель поступает в топку, куда по двум направлениям подается воздух, нагретый в воздухоподогревателе до температуры 250…400 °С. Часть воздуха подводится к месту поступления топлива в топку. Мелкие частицы топлива подхватываются потоком воздуха и сгорают в топочном пространстве на лету в виде факела. Воздух, поступивший в топку вместе с топливом, называется первичным. Крупные куски топлива выпадают из воздушного потока на цепную решетку, которая непрерывно движется. По мере продвижения цепной решетки топливо сгорает, а шлак и зола сбрасываются в шлаковый бункер.

Воздух, необходимый для горения топлива на полотне цепной решетки, засасывается дутьевым вентилятором через возду-хозаборную шахту и подается через воздухоподогреватель 9 под слой топлива через специальные колосники. Этот воздух называют также первичным.

В процессе сгорания топлива негорючие частички золы плавятся и образуют шлаки. При слоевом сжигании топлива основная масса золы и шлака остается на решетке. Однако часть золы в виде жидких и тестообразных шлаков вместе с несгорев-шими частицами топлива топочные газы захватывают и выносят из топочной камеры. Для дожигания несгоревших частиц топлива в верхнюю часть факела подают вторичный воздух. Чтобы исключить налипание частичек шлака на трубы фестона 5, температуру топочных газов на выходе из топочной камеры поддерживают ниже температуры плавления золы (1000…) 100 °С).

В топочной камере теплота от горящего топлива воспринимается поверхностями нагрева в виде лучистой энергии (излучения), которую называют радиацией. Поверхности нагрева, расположенные в топке, называют поэтому радиационными. Передача теплоты излучением в несколько раз эффективнее передачи теплоты конвекцией, поэтому в современных котлах стены топочной камеры стремятся более плотно закрыть трубами. Радиационные поверхности нагрева защищают (экранируют) внутреннюю поверхность обмуровки котла от высоких температур и химического воздействия расплавленных шлаков и поэтому называются экранными.

Задний топочный экран в верхней части топки разрежен и образует так называемый фестон. За фестоном в горизонтальном газоходе расположены конвективные поверхности нагрева из труб диаметром 30…40 мм, которые образуют пароперегреватель. Отдав часть теплоты пароперегревателю, топочные газы поступают в опускной газоход, в котором располагаются водяной экономайзер и воздухоподогреватель. Уходящие топочные газы, охлажденные до температуры 120… 180 °С, проходят через золоулавливатель, где очищаются от летучей золы, и дымососом выбрасываются через дымовую трубу в атмосферу. Частицы золы из золоуловителя и шлак из бункера системой шлакозолоудаления выносятся из котельной.

Экранные трубы топки находятся в зоне высоких температур, поэтому необходимо интенсивно отводить теплоту с помощью циркулирующей в этих трубах воды. Если на внутренних стенках экранных труб образуется накипь, то это затрудняет передачу теплоты от раскаленных продуктов сгорания к воде или пару и может привести к перегреву металла и разрыву труб под действием внутреннего давления. Для того чтобы накипь не образовывалась, воду, поступающую для питания котлов, предварительно обрабатывают.

Обработка воды заключается в том, что из нее удаляют большую часть плохо растворимых в воде солей кальция и магния (соли жесткости), а также кислород и углекислый газ, которые вызывают коррозию металла труб, барабана и камер. Предварительная обработка воды называется водоподготовкой, а обработанная вода, пригодная для питания котлов, - питательной. Вода, находящаяся внутри котла, называется котловой.

Поскольку в котле поддерживается давление выше атмосферного, питательную воду подают в котел принудительно питательным насосом, который забирает воду из деаэратора и подает ее через водяной экономайзер в барабан котла. Барабан служит для создания необходимого запаса котловой воды, обеспечения естественной циркуляции воды и сепарации пара.

Из барабана вода через необогреваемые водоопускные (во-доподводящие) трубы и камеры поступает в трубы поверхностей нагрева, в которых она нагревается, вскипает и в виде пароводяной смеси возвращается в барабан. Пар в барабане паросепарационными устройствами отделяется от капелек котловой воды, обладающих повышенным солесодержанием, и отводится в пароперегреватель. Отделившаяся вода смешивается в барабане котла с добавочной питательной водой и возвращается в трубы поверхностей нагрева.

Естественная циркуляция воды в котле осуществляется за счет разности плотностей воды в необогреваемых (или слабо обогреваемых) водоопускных трубах и пароводяной смеси в интенсивно обогреваемых трубах поверхностей нагрева. Поскольку плотность пароводяной смеси значительно меньше плотности воды, общий собственный вес столба пароводяной смеси в интенсивно обогреваемых трубах меньше собственного веса воды в необогреваемых или слабо обогреваемых водоопускных трубах.

В тех случаях, когда в паровых котлах по конструктивным соображениям затруднительно создать надежную циркуляцию котловой воды за счет естественного напора, применяют специальные насосы, которые обеспечивают высокие скорости движения воды по всему циркуляционному контуру. Такую принудительную систему циркуляции применяют также в водогрейных котлах.

Непрерывно поступающие в котел с питательной водой соли и образующийся в котловой воде шлам скапливаются в водяном объеме котла. Чтобы соли жесткости и щелочи не накапливались в котловой воде, часть воды из котла непрерывно отводят, при этом одновременно добавляют питательную воду с меньшим солесодержанием. Этот процесс называют непрерывной продувкой.

Непрерывную продувку осуществляют из верхнего барабана котла через дырчатые трубы. Расход воды при непрерывной продувке зависит от ее качества и составляет обычно 1…2% от производительности котла. Вода, удаляемая из котла с непрерывной продувкой, направляется в расширитель (сепаратор) и в дальнейшем используется в технологической схеме котельной установки для подогрева сырой или химически очищенной воды.

Для удаления скапливающегося в нижних точках котла (нижних камерах и барабанах) шлама применяют периодическую продувку. При периодических продувках воду, содержащую значительное количество шлама, направляют в расширитель периодических продувок (барботер), откуда образовавшийся пар отводится в атмосферу, а остаток воды со шламом сливается в канализацию.

Вместе с нагретой котловой водой, удаляемой с непрерывной продувкой из котла, отводится значительное количество теплоты, тем большее, чем больше процент продувки. Кроме того, приходится увеличивать расход питательной воды на подпитку котла. Поэтому количество продувочной воды должно быть минимальным. Чтобы сократить расход питательной воды при непрерывной продувке, применяют двухступенчатое испарение.

Паросепарационные устройства, используемые для очистки и осушения пара, могут быть внутри- или внебарабанные. Внеба-рабанные паросепарационные устройства выполняют обычно в виде выносных циклонов.

В пароперегревателе пар доводится до номинальной температуры и через выходную камеру и запорную задвижку подается по паропроводам к потребителю.

В том случае, если потребителю необходимо подать горячую воду, полученный в паровом котле пар пропускают через систему теплообменников. При этом в РОУ уменьшают давление пара, а в теплообменниках - водоподогревателях пар нагревает воду сетевой установки. Далее нагретая сетевая вода поступает по трубопроводам к потребителю.

Сложность технологической схемы котельной зависит от вида сжигаемого топлива и системы теплоснабжения, которая бывает открытой и закрытой.

В открытых системах теплоснабжения нагретая в котельной вода служит не только теплоносителем, но и поступает на нужды горячего водоснабжения путем непосредственного разбора из трубопроводов тепловой сети без промежуточных подогревателей абонентских узлов горячего водоснабжения. При этом количество подпиточной воды определяется потерями в сетях и расходом воды на горячее водоснабжение.

Для закрытых систем теплоснабжения характерно наличие замкнутого (закрытого) контура с циркулирующим теплоносителем, который отдает свою теплоту в водоводяных подогревателях районных тепловых пунктов. Количество подпиточной воды определяется только потерями в сетях, поэтому даже в мощных водогрейных котельных устанавливают один подпиточный деаэратор небольшой производительности.

Выбор системы теплоснабжения производят путем технико-экономических расчетов.



- Схемы котельных установок

Выбор системы теплоснабжения (открытая или закрытая) производится на основе технико-экономических расчетов. Руководствуясь заданием на проектирование и исходными данными, полученными от заказчика, приступают к составлению, а затем и расчету тепловой схемы котельной, оборудованной стальными водогрейными котлами (рис. 3.2).

Рис. 3.2. Принципиальная тепловая схема водогрейной котельной

1 – сетевой насос; 2 – водогрейный котел; 3 – сетевой насос; 4 – подогреватель химочищенной воды; 5 – подогреватель сырой воды; 6 – вакуумный деаэратор; 7 – подпиточный насос; 8 – насос сырой воды; 9 – химводоподготовка; 10 – охладитель выпара; 11 – водоструйный эжектор; 12 – расходный бак эжектора; 13 – эжекторный насос

Для уменьшения интенсивности наружной коррозии труб «хвостовых» поверхностей нагрева стальных водогрейных котлов необходимо поддерживать температуру воды на входе в котлы выше температуры точки росы уходящих из котлов дымовых газов. Минимально допустимая температура воды на входе в котлы рекомендуется следующая: при работе на природном газе – не ниже 60°С; при работе на малосернистом мазуте – не ниже 70°С; при работе на высокосернистом мазуте – не ниже 110°С. В связи с тем, что температура воды в обратных магистралях тепловых сетей почти всегда ниже 60°С, в обвязке водогрейных котлов предусматривают рециркуляционные насосы и соответствующие трубопроводы. Для определения необходимой температуры воды за водогрейными котлами должны быть известны режимы работы тепловых сетей, которые отличаются от графиков или режимных карт котлоагрегатов.

При выполнении рабочих (монтажных) схем котельных применяют общестанционную или агрегатную схему компоновки оборудования. Выбор общестанционного или агрегатного способа в каждом отдельном случае решается, исходя из эксплуатационных соображений. Важнейшими из них при компоновке по агрегатной схеме являются облегчение учета и регулирования расхода и параметров теплоносителя от каждого агрегата, уменьшения протяженности в пределах котельной сетевых трубопроводов большого диаметра и упрощения ввода в эксплуатацию каждого агрегата.

Тепловая схема котельной для открытой системы теплоснабжения отличается от таковой для закрытой в основном производительностью водоподготовки для подпитки тепловых сетей. Так как расходы воды при открытой системе неравномерны по времени, то для выравнивания суточного графика нагрузок на горячее водоснабжение и уменьшения расчетной производительности котлоагрегатов и оборудования водоподготовки предусматривают установку баков-аккумуляторов деаэрированной горячей воды. Из них в часы максимума потребления горячая вода подпиточными насосами подается во всасывающую магистраль сетевых насосов. Суммарная емкость баков-аккумуляторов принимается в 10 раз большей среднечасового за сутки расхода воды на бытовое горячее водоснабжение.



Количество, единичная производительность и развиваемые напоры насосов котельной должны соответствовать требованиям регулирования работы тепловых сетей при экономном расходовании электроэнергии на их привод. Такие условия иногда диктуют необходимость использования в тепловых схемах котельных увеличенного количества насосов – сетевых (зимних и летних), перекачивающих, рециркуляционных и подпиточных (также зимних и летних).

При выборе системы теплоснабжения (закрытой или открытой) нужно учитывать, по меньшей мере, три особенности исходной воды, используемой для подпитки: склонность к низкотемпературному накипеобразованию; коррозионную активность; склонность к сульфидному загрязнению.

В зависимости от характера тепловых нагрузок котельные разделяют на следующие типы:

Производственные – предназначенные для снабжения теплом технологических потребителей.

Производственно-отопительные – осуществляющие теплоснабжение технологических потребителей, а также дающие тепло для отопления, вентиляции и горячего водоснабжения промышленных, общественных, жилых зданий и сооружений.

Отопительные – вырабатывающие тепловую энергию для нужд отопления, вентиляции и горячего водоснабжения жилых, общественных, промышленных зданий и сооружений.

По надежности отпуска тепла потребителям котельные относятся:

К первой категории – котельные, являющиеся единственным источником тепла системы теплоснабжения и обеспечивающие потребителей первой категории, не имеющих индивидуальных резервных источников тепла;

Потребители тепла по надежности теплоснабжения относятся:

К первой категории – потребители, нарушение теплоснабжения которых связано с опасностью для жизни людей или со значительным ущербом народному хозяйству (повреждение технологического оборудования, массовый брак продукции);

3.2.1. Тепловые схемы котельных с водогрейными котлами и основы их расчета

Для того чтобы тепловые схемы котельных с водогрейными котлами легко читались, рекомендуется следующий порядок изображения оборудования на них (см. рис. 3.1). На верхней правой части листа размещают водогрейные котлы, а на левой – деаэраторы, ниже котлоагрегатов размещают рециркуляционные и еще ниже сетевые насосы, а под деаэраторами – теплообменники (подогреватели), баки деаэрированной и рабочей воды, подпиточные насосы, насосы сырой воды, дренажные баки и продувочный колодец.

Работа отопительной котельной, принципиальная тепловая схема которой показана на рис. 3.1, осуществляется следующим образом. Вода из обратной линии тепловых сетей с небольшим напором поступает на всас сетевого насоса 2 . Туда же подводится вода от подпиточного насоса 6 , компенсирующая утечки воды в тепловых сетях. На всас насоса 2 подается и горячая вода, тепло которой частично использовано в теплообменниках 9 и 4 для подогрева, соответственно, химически очищенной и сырой воды.

Для обеспечения заданной из условий предупреждения коррозии температуры воды перед котлом в трубопровод за сетевым насосом подают при помощи рециркуляционного насоса 12 необходимое количество горячей воды, вышедшей из водогрейного котла 1 . Линию, по которой подают горячую воду, называют рециркуляционной. При всех режимах работы тепловой сети, кроме максимально-зимнего, часть воды из обратной линии после сетевого насоса 2 , минуя котел, подают по перепускной линии в подающую магистраль, где она, смешавшись с горячей водой из котла, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей. Вода, предназначенная для восполнения утечек в тепловых сетях, предварительно подается насосом сырой воды 3 в подогреватель сырой воды 4 , где она подогревается до температуры 18–20 ºC и затем направляется на химводоочистку. Химически очищенная вода подогревается в теплообменниках 8 , 9 и 11 и деаэрируется в деаэраторе 10 . Воду для подпитки тепловых сетей из бака деаэрированной воды 7 забирает подпиточный насос 6 и подает в обратную линию.

Основной целью расчета любой тепловой схемы котельной является выбор основного и вспомогательного оборудования с определением исходных данных для последующих технико-экономических расчетов.

Надежность и экономичность водогрейных котлов зависит от постоянства расхода воды через них, который не должен снижаться относительно установленного заводом-изготовителем. Во избежание низкотемпературной и сернокислотной коррозии конвективных поверхностей нагрева температура воды на входе в котел при сжигании топлив, не содержащих серу, должна быть не менее 60 ºС, малосернистых топлив не менее 70 ºС и высокосернистых топлив не менее 110 ºС. Для повышения температуры воды на входе в водогрейный котел при температурах воды ниже указанных устанавливается рециркуляционный насос.

В котельных с водогрейными котлами часто устанавливаются вакуумные деаэраторы. Но они требуют при эксплуатации тщательного надзора, поэтому предпочитают устанавливать деаэраторы атмосферного типа.

Сильное влияние на оборудование котельной с водогрейными агрегатами оказывает система горячего водоснабжения – закрытая или открытая. Открытой называется система, в которой теплоноситель – горячая вода – частично или полностью используется потребителем. Взакрытых системах нагрев воды на горячее водоснабжение осуществляется прямой отопительной водой в местных теплообменниках.

При открытой системе горячего водоснабжения количество воды, идущее на подпитку тепловых сетей, заметно возрастает и может достигать 20% расхода воды через тепловые сети. Т.е. количество воды, которое необходимо подготовить на химводоочистке, при открытой системе горячего водоснабжения возрастает в несколько раз по сравнению с закрытой.

Так как расходы воды при открытой системе неравномерны, то для выравнивания суточного графика нагрузок на горячее водоснабжение и уменьшения расчетной производительности оборудования водоподготовки устанавливаются баки-аккумуляторы для деаэрированной воды. Из них в часы максимума потребления горячая вода подпиточными насосами подается на всас сетевых насосов.

Качество подготовки воды для подпитки открытой системы теплоснабжения должно быть значительно выше качества воды для подпитки закрытой системы, т.к. к воде горячего водоснабжения предъявляются такие же требования, как к питьевой водопроводной воде.

Перед расчетом тепловой схемы котельной, работающей на закрытую систему теплоснабжения, следует выбрать схему присоединения к системе теплоснабжения местных теплообменников, приготовляющих воду для нужд горячего водоснабжения. В настоящее время в основном применяются три схемы присоединения местных теплообменников, показанные на рис. 3.2.

На рис. 3.2 а показана схема параллельного присоединения местных теплообменников горячего водоснабжения с системой отопления потребителей. На рис. 3.2 б , в показаны двухступенчатая последовательная и смешанная схемы включения местных теплообменников горячего водоснабжения.

Выбор схемы присоединения местных теплообменников горячего водоснабжения производится в зависимости от отношения максимального расхода теплоты на горячее водоснабжение к максимальному расходу теплоты на отопление. При Q г.в /Q о ≤0,06 присоединение местных теплообменников производится по двухступенчатой последовательной схеме; при 0,6< Q г.в /Q о ≤1,2 – по двухступенчатой смешанной схеме; при Q г.в /Q о ≥1,2 – по параллельной схеме. При двухступенчатой последовательной схеме присоединения местных теплообменников должно предусматриваться переключение теплообменников на двухступенчатую смешанную схему.

Расчет тепловой схемы водогрейной котельной базируется на решении уравнений теплового и материального баланса, составляемых для каждого элемента схемы. При расчете тепловой схемы водогрейной котельной, когда не происходит фазовых превращений нагреваемой и охлаждаемой сред (воды), уравнение теплового баланса в общем виде можно записать следующим образом

где G ох, G н – массовый расход, соответственно, охлаждаемого и нагреваемого теплоносителей, кг/с; c ох, c н –средняя удельная теплоемкость, соответственно, охлаждаемого и нагреваемого теплоносителей, кДж/(кг·°C);
– соответственно, начальная и конечная температуры охлаждаемого теплоносителя, °C;
– соответственно, начальная и конечная температуры нагреваемого теплоносителя, °C; η – КПД теплообменника.

При расхождении предварительно принятых в расчете величин с полученными в результате расчета более чем на 3% расчет следует повторить, подставив в качестве исходных данных полученные значения.