Как рассчитать плату за отопление. Как рассчитать отопление в квартире

При планировании системы обогрева нашего дома перед нами встает вопрос о том, как правильно рассчитать отопление. И расчет в данном случае имеет два аспекта: с одной стороны, необходимо выяснить, какие приборы следует монтировать для поддержания в помещении комфортного микроклимата, а другой – просчитать сумму, которую нужно будет тратить на оплату услуг.

Обогрев частного дома

Тип котла и его мощность

Если мы планируем постройку или реконструкцию частного дома, то одним из важнейших моментов проектирования является выбор котла, оптимального с точки зрения мощности. Если установить недостаточно производительный котел, то в холодное время года он будет работать в форсированном режиме, что приведет к его быстрому износу. С другой стороны, платить за ненужную нам мощность тоже не хочется!

Обратите внимание! Использование котла с избытком по мощности приводит к увеличению расхода энергоносителя на 20-30%

Первое, с чем следует определиться, – это тип самого котла:

  • Твердотопливные – сравнительно недороги и экономичны, но имеют некоторые неудобства в эксплуатации. К таким неудобствам относится, например, необходимость периодической закладки топлива (в сильный мороз – до 3-4 раз в сутки).
  • Жидкотопливные – обладают вполне приемлемыми эксплуатационными характеристиками, но большое количество токсичных продуктов сгорания делает их использование недостаточно экологичным.
  • Электрические – достаточно эффективны и просты в использовании. Главный недостаток таких котлов – высокая стоимость электроэнергии.
  • Газовые – предпочтительный вариант по большинству параметров, включая удобство эксплуатации и экономное расходование энергоресурсов. Ключевой недостаток – высокая цена самого оборудования и зависимость от наличия газопровода.

Вне зависимости от типа установки, используемой для обогрева дома, необходимо подобрать ее оптимальную производительность.

Существует довольно простая формула для ее расчета:

Wкот = Wуд * S / 10

В данном случае:

  • Wкот – минимально допустимая мощность котла.
  • Wуд – показатель удельной мощности на 10 квадратных метров.
  • S – площадь отапливаемого помещения.

Обратите внимание! Удельная мощность является нормативным показателем и отличается в разных регионах. Так в Москве и Подмосковье этот параметр равен 1-1,2, в северных регионах может достигать 2, а в южных составляет 0,7-0,9.

Расчет радиаторов

Кроме самого котла, необходимо также произвести . Ниже мы расскажем, как рассчитывается отопление основной площади нашего дома.

Для расчета количества батарей используется следующая формула:

W = S * h * 41

  • W – мощность радиаторов, достаточная для обеспечения комфортной температуры в помещении.
  • S – площадь комнаты.
  • H – высота от пола до потолочного перекрытия (без учета подвесных конструкций).
  • 41 – норма расхода тепловой энергии на кубометр внутреннего объема.

Результатом расчета по этой формуле становится суммарная мощность установленных радиаторов. Полученную цифру мы делим на теплоотдачу одной секции батареи (инструкция к радиатору должна содержать эту информации), и получаем необходимое количество секций. Для обеспечения наилучшего обогрева полученное число лучше округлять в большую сторону!

Естественно, после завершения всех вычислений необходимо подобрать оптимальные модели радиаторов, и установить их таким образом, чтобы потери тепла были минимальными. Технология установки радиаторов отопления наглядно продемонстрирована в видео уроках, которые выложены на нашем портале.

Вычисление оплаты

Оплата без общедомового счетчика

Не менее важным моментом является вычисление оплаты за теплоснабжение вашей квартиры. Согласно Постановления Правительства РФ № 354 «О предоставлении коммунальных услуг…» в состав оплаты за отопление включается:

  • Оплата за отопление, предоставленное в вашей квартире.
  • Оплата за отопление общедомовых помещений.

Технология расчета зависит от того, оборудован ли ваш дом приборами учета тепла. В нашей статье мы рассмотрим оба варианта, что позволит вам своими руками выполнять вычисления в любой ситуации.

Итак, как рассчитывается тариф на отопление в доме, в котором общий счетчик не установлен?

Оплата за обогрев самой квартиры, в которой установлен индивидуальный счетчик отопления, производится по формуле:

P i = V i * T k , где:

  • V i – количество тепла, потребленное согласно показателей прибора индивидуального учета.

Например, счетчик показал, что за месяц вы израсходовали 1,5 гигакалорий тепла. В этом случае общая сумма составит:

1,5 * 1400 (тариф на отопление)= 2100 р.

Если счетчика нет, то используется другая формула:

P i = S i * N t * T t , где:

  • S i – площадь помещения
  • N t – норматив потребления
  • T t — тариф, установленный для региона

В данном случае пример расчета выглядит следующим образом:

  • Норматив потребления — 0, 025 ГКал на квадратный метр.
  • Площадь квартиры – 75 квадратных метров.
  • Тариф – 1400 рублей.

В результате имеем:

77 * 0,0025*1400 = 2 625 р.

Как видите, внимательный расчет показывает всю эффективность установки счетчика на отопление в каждой квартире, ведь экономия получается весьма существенной.

P i = V i * T k , где:

  • V i – количество тепла, предоставленное на общедомовые нужды за отчетный период.
  • T k — тариф, установленный законодательно.

К примеру, если на общее отопление была затрачена 1 гигакалория, то стоимость оплаты составит 1400 рублей.

Оплата с общедомовым счетчиком

Если же в доме установлен общий прибор для учета, то расчет индивидуально потребленной тепловой энергии рассчитывается так:

P i = V d * S i /S d *T t , где:

  • V d — объем тепла, потребленного за период согласно показателям общедомового счетчика отопления.
  • S i – площадь квартиры.
  • S d — площадь всех помещений, входящих в состав дома (включая жилые, нежилые и хозяйственные).
  • T t — тариф, установленный в вашем регионе.

Оплата за отопление помещений общего пользования производится по той же формуле, что и в предыдущем случае.

Еще одним способом является использование калькуляторов ЖКХ. Нас сегодняшний день существует несколько подобных калькуляторов, и данные, полученные в результате их применения, обеспечивают достаточную точность расчетов.

В нашей статье мы показали, как выполняются вычисления необходимой мощности отопительных котлов и радиаторов для обогрева вашего дома, а также наглядно продемонстрировали, как рассчитать тариф на отопление квартиры в разных ситуациях. Надеемся, что приведенные здесь формул и примеры будут полезны, ведь строгий учет – это самое главное условие для сокращения расходов!

Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья. В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.

Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант. Одним словом, без определенных расчетов – не обойтись.

Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег. А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов. По аналогии можно будет выполнить , встроенный в эту страницу, поможет выполнить необходимые вычисления. Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.

Простейшие приемы расчета

Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.

  • Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.

Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.

Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:

Предназначение помещения Температура воздуха, °С Относительная влажность, % Скорость движения воздуха, м/с
оптимальная допустимая оптимальная допустимая, max оптимальная, max допустимая, max
Для холодного времени года
Жилая комната 20÷22 18÷24 (20÷24) 45÷30 60 0.15 0.2
То же, но для жилых комнат в регионах с минимальными температурами от - 31 °С и ниже 21÷23 20÷24 (22÷24) 45÷30 60 0.15 0.2
Кухня 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Туалет 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Ванная, совмещенный санузел 24÷26 18÷26 Н/Н Н/Н 0.15 0.2
Помещения для отдыха и учебных занятий 20÷22 18÷24 45÷30 60 0.15 0.2
Межквартирный коридор 18÷20 16÷22 45÷30 60 Н/Н Н/Н
Вестибюль, лестничная клетка 16÷18 14÷20 Н/Н Н/Н Н/Н Н/Н
Кладовые 16÷18 12÷22 Н/Н Н/Н Н/Н Н/Н
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется)
Жилая комната 22÷25 20÷28 60÷30 65 0.2 0.3
  • Второе – компенсирование потерь тепла через элементы конструкции здания.

Самый главный «противник» системы отопления — это теплопотери через строительные конструкции

Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:

Элемент конструкции здания Примерное значение теплопотерь
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями от 5 до 10%
«Мостики холода» через плохо изолированные стыки строительных конструкций от 5 до 10%
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) до 5%
Внешние стены, в зависимости от степени утепленности от 20 до 30%
Некачественные окна и внешние двери порядка 20÷25%, из них около 10% - через негерметизированные стыки между коробками и стеной, и за счет проветривания
Крыша до 20%
Вентиляция и дымоход до 25 ÷30%

Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.

Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.

Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:

Самый примитивный способ подсчета — соотношение 100 Вт/м²

Q = S × 100

Q – необходимая тепловая мощность для помещения;

S – площадь помещения (м²);

100 — удельная мощность на единицу площади (Вт/м²).

Например, комната 3.2 × 5,5 м

S = 3,2 × 5,5 = 17,6 м²

Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт

Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м). С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.

Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.

Q = S × h × 41 (или 34)

h – высота потолков (м);

41 или 34 – удельная мощность на единицу объема (Вт/м³).

Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:

Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт

Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.

Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.

Возможно, вас заинтересует информация о том, что собой представляют

Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений

Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью. Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области. Кроме того, комната - комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа. Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом».

Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет. Поверьте, по предлагаемой в статье методике это будет сделать не так сложно.

Общие принципы и формула расчета

В основу расчетов будет положено все то же соотношение: 100 Вт на 1 квадратный метр. Но вот только сама формула «обрастает» немалым количеством разнообразных поправочных коэффициентов.

Q = (S × 100) × a × b× c × d × e × f × g × h × i × j × k × l × m

Латинские буквы, обозначающие коэффициенты, взяты совершенно произвольно, в алфавитном порядке, и не имеют отношения к каким-либо стандартно принятым в физике величинам. О значении каждого коэффициента будет рассказано отдельно.

  • «а» - коэффициент, учитывающий количество внешних стен в конкретной комнате.

Очевидно, что чем больше в помещении внешних стен, тем больше площадь, через которую происходит тепловые потери. Кроме того, наличие двух и более внешних стен означает еще и углы – чрезвычайно уязвимые места с точки зрения образования «мостиков холода». Коэффициент «а» внесет поправку на эту специфическую особенность комнаты.

Коэффициент принимают равным:

— внешних стен нет (внутреннее помещение): а = 0,8 ;

— внешняя стена одна : а = 1,0 ;

— внешних стен две : а = 1,2 ;

— внешних стен три: а = 1,4 .

  • «b» - коэффициент, учитывающий расположение внешних стен помещения относительно сторон света.

Возможно, вас заинтересует информация о том, какие бывают

Даже в самые холодные зимние дни солнечная энергия все же оказывает влияние на температурный баланс в здании. Вполне естественно, что та сторона дома, которая обращена на юг, получает определенный нагрев от солнечных лучей, и теплопотери через нее ниже.

А вот стены и окна, обращённые на север, Солнца «не видят» никогда. Восточная часть дома, хотя и «прихватывает» утренние солнечные лучи, какого-либо действенного нагрева от них все же не получает.

Исходя из этого, вводим коэффициент «b»:

— внешние стены комнаты смотрят на Север или Восток : b = 1,1 ;

— внешние стены помещения ориентированы на Юг или Запад : b = 1,0 .

  • «с» - коэффициент, учитывающий расположение помещения относительно зимней «розы ветров»

Возможно, эта поправка не столь обязательна для домов, расположенных на защищенных от ветров участках. Но иногда преобладающие зимние ветры способны внести свои «жесткие коррективы» в тепловой баланс здания. Естественно, что наветренная сторона, то есть «подставленная» ветру, будет терять значительно больше тела, по сравнению с подветренной, противоположной.

По результатам многолетних метеонаблюдений в любом регионе составляется так называемая «роза ветров» - графическая схема, показывающая преобладающие направления ветра в зимнее и летнее время года. Эту информацию можно получить в местной гидрометеослужбе. Впрочем, многие жители и сами, без метеорологов, прекрасно знают, откуда преимущественно дуют ветра зимой, и с какой стороны дома обычно наметает наиболее глубокие сугробы.

Если есть желание провести расчеты с более высокой точностью, то можно включить в формулу и поправочный коэффициент «с», приняв его равным:

— наветренная сторона дома: с = 1,2 ;

— подветренные стены дома: с = 1,0 ;

— стена, расположенные параллельно направлению ветра: с = 1,1 .

Естественно, количество теплопотерь через все строительные конструкции здания будет очень сильно зависеть от уровня зимних температур. Вполне понятно, что в течение зимы показатели термометра «пляшут» в определенном диапазоне, но для каждого региона имеется усредненный показатель самых низких температур, свойственных наиболее холодной пятидневке года (обычно это свойственно январю). Для примера – ниже размещена карта-схема территории России, на которой цветами показаны примерные значения.

Обычно это значение несложно уточнить в региональной метеослужбе, но можно, в принципе, ориентироваться и на свои собственные наблюдения.

Итак, коэффициент «d», учитывающий особенности климата региона, для наших расчетом в принимаем равным:

— от – 35 °С и ниже: d = 1,5 ;

— от – 30 °С до – 34 °С: d = 1,3 ;

— от – 25 °С до – 29 °С: d = 1,2 ;

— от – 20 °С до – 24 °С: d = 1,1 ;

— от – 15 °С до – 19 °С: d = 1,0 ;

— от – 10 °С до – 14 °С: d = 0,9 ;

— не холоднее – 10 °С: d = 0,7 .

  • «е» - коэффициент, учитывающий степень утепленности внешних стен.

Суммарное значение тепловых потерь здания напрямую связано со степенью утепленности всех строительных конструкций. Одним из «лидеров» по теплопотерям являются стены. Стало быть, значение тепловой мощности, необходимое для поддержания комфортных условий проживания в помещении, находится в зависимости от качества их термоизоляции.

Значение коэффициента для наших расчетов можно принять следующее:

— внешние стены не имеют утепления: е = 1,27 ;

— средняя степень утепления – стены в два кирпича или предусмотрена их поверхностная термоизоляция другими утеплителями: е = 1,0 ;

— утепление проведено качественно, на основании проведенных теплотехнических расчетов: е = 0,85 .

Ниже по ходу настоящей публикации будут даны рекомендации о том, как можно определить степень утепленности стен и иных конструкций здания.

  • коэффициент «f» - поправка на высоту потолков

Потолки, особенно в частных домах, могут иметь различную высоту. Стало быть, и тепловая мощность на прогрев того или иного помещения одинаковой площади будет различаться еще и по этому параметру.

Не будет большой ошибкой принять следующие значения поправочного коэффициента «f»:

— высота потолков до 2.7 м: f = 1,0 ;

— высота потоков от 2,8 до 3,0 м: f = 1,05 ;

— высота потолков от 3,1 до 3,5 м: f = 1,1 ;

— высота потолков от 3,6 до 4,0 м: f = 1,15 ;

— высота потолков более 4,1 м: f = 1,2 .

  • « g» - коэффициент, учитывающий тип пола или помещение, расположенное под перекрытием.

Как было показано выше, пол является одним из существенных источников теплопотерь. Значит, необходимо внести некоторые корректировки в расчет и на эту особенность конкретного помещения. Поправочный коэффициент «g» можно принять равным:

— холодный пол по грунту или над неотапливаемым помещением (например, подвальным или цокольным): g = 1,4 ;

— утепленный пол по грунту или над неотапливаемым помещением: g = 1,2 ;

— снизу расположено отапливаемое помещение: g = 1,0 .

  • « h» - коэффициент, учитывающий тип помещения, расположенного сверху.

Нагретый системой отопления воздух всегда поднимается вверх, и если потолок в помещении холодный, то неизбежны повышенные теплопотери, которые потребуют увеличения необходимой тепловой мощности. Введём коэффициент «h», учитывающий и эту особенность рассчитываемого помещения:

— сверху расположен «холодный» чердак: h = 1,0 ;

— сверху расположен утепленный чердак или иное утепленное помещение: h = 0,9 ;

— сверху расположено любое отапливаемое помещение: h = 0,8 .

  • « i» - коэффициент, учитывающий особенности конструкции окон

Окна – один из «магистральных маршрутов» течек тепла. Естественно, многое в этом вопросе зависит от качества самой оконной конструкции. Старые деревянные рамы, которые раньше повсеместно устанавливались во всех домах, по степени своей термоизоляции существенно уступают современным многокамерным системам со стеклопакетами.

Без слов понятно, что термоизоляционные качества этих окон — существенно различаются

Но и между ПВЗХ-окнами нет полного единообразия. Например, двухкамерный стеклопакет (с тремя стеклами) будет намного более «теплым» чем однокамерный.

Значит, необходимо ввести определенный коэффициент «i», учитывающий тип установленных в комнате окон:

— стандартные деревянные окна с обычным двойным остеклением: i = 1,27 ;

— современные оконные системы с однокамерным стеклопакетом: i = 1,0 ;

— современные оконные системы с двухкамерным или трехкамерным стеклопакетом, в том числе и с аргоновым заполнением: i = 0,85 .

  • « j» - поправочный коэффициент на общую площадь остекления помещения

Какими бы качественными окна ни были, полностью избежать теплопотерь через них все равно не удастся. Но вполне понятно, что никак нельзя сравнивать маленькое окошко с панорамным остеклением чуть ли ни на всю стену.

Потребуется для начала найти соотношение площадей всех окон в комнате и самого помещения:

х = ∑ S ок / S п

S ок – суммарная площадь окон в помещении;

S п – площадь помещения.

В зависимости от полученного значения и определяется поправочный коэффициент «j»:

— х = 0 ÷ 0,1 → j = 0,8 ;

— х = 0,11 ÷ 0,2 → j = 0,9 ;

— х = 0,21 ÷ 0,3 → j = 1,0 ;

— х = 0,31 ÷ 0,4 → j = 1,1 ;

— х = 0,41 ÷ 0,5 → j = 1,2 ;

  • « k» - коэффициент, дающий поправку на наличие входной двери

Дверь на улицу или на неотапливаемый балкон — это всегда дополнительная «лазейка» для холода

Дверь на улицу или на открытый балкон способна внести свои коррективы в тепловой баланс помещения – каждое ее открытие сопровождается проникновением в помещение немалого объема холодного воздуха. Поэтому имеет смысл учесть и ее наличие – для этого введем коэффициент «k», который примем равным:

— двери нет: k = 1,0 ;

— одна дверь на улицу или на балкон: k = 1,3 ;

— две двери на улицу или на балкон: k = 1,7 .

  • « l» - возможные поправки на схему подключения радиаторов отопления

Возможно, кому-то это покажется несущественной мелочью, но все же – почему бы сразу не учесть планируемую схему подключения радиаторов отопления. Дело в том, что их теплоотдача, а значит, и участие в поддержании определенного температурного баланса в помещении, достаточно заметно меняется при разных типах врезки труб подачи и «обратки».

Иллюстрация Тип врезки радиатора Значение коэффициента «l»
Подключение по диагонали: подача сверху, «обратка» снизу l = 1.0
Подключение с одной стороны: подача сверху, «обратка» снизу l = 1.03
Двухстороннее подключение: и подача, и «обратка» снизу l = 1.13
Подключение по диагонали: подача снизу, «обратка» сверху l = 1.25
Подключение с одной стороны: подача снизу, «обратка» сверху l = 1.28
Одностороннее подключение, и подача, и «обратка» снизу l = 1.28
  • « m» - поправочный коэффициент на особенности места установки радиаторов отопления

И, наконец, последний коэффициент, который также связан с особенностями подключения радиаторов отопления. Наверное, понятно, что если батарея установлена открыто, ничем не загораживается сверху и с фасадной части, то она будет давать максимальную теплоотдачу. Однако, такая установка возможна далеко не всегда – чаще радиаторы частично скрываются подоконниками. Возможны и другие варианты. Кроме того, некоторые хозяева, стараясь вписать приоры отопления в создаваемый интерьерный ансамбль, скрывают их полностью или частично декоративными экранами – это тоже существенно отражается на тепловой отдаче.

Если есть определенные «наметки», как и где будут монтироваться радиаторы, это также можно учесть при проведении расчетов, введя специальный коэффициент «m»:

Иллюстрация Особенности установки радиаторов Значение коэффициента "m"
Радиатор расположен на стене открыто или не перекрывается сверху подоконником m = 0,9
Радиатор сверху перекрыт подоконником или полкой m = 1,0
Радиатор сверху перекрыт выступающей стеновой нишей m = 1,07
Радиатор сверху прикрыт подоконником (нишей), а с лицевой части - декоративным экраном m = 1,12
Радиатор полностью заключен в декоративный кожух m = 1,2

Итак, с формулой расчета ясность есть. Наверняка, кто-то из читателей сразу возьмется за голову – мол, слишком сложно и громоздко. Однако, если к делу подойти системно, упорядочено, то никакой сложности нет и в помине.

У любого хорошего хозяина жилья обязательно есть подробный графический план своих «владений» с проставленными размерами, и обычно – сориентированный по сторонам света. Климатические особенности региона уточнить несложно. Останется лишь пройтись по всем помещениям с рулеткой, уточнить некоторые нюансы по каждой комнате. Особенности жилья - «соседство по вертикали» сверху и снизу, расположение входных дверей, предполагаемую или уже имеющуюся схему установки радиаторов отопления – никто, кроме хозяев, лучше не знает.

Рекомендуется сразу составить рабочую таблицу, куда занести все необходимые данные по каждому помещению. В нее же будет заноситься и результат вычислений. Ну а сами вычисления поможет провести встроенный калькулятор, в котором уже «заложены» все упомянутые выше коэффициенты и соотношения.

Если какие-то данные получить не удалось, то можно их, конечно, в расчет не принимать, но в этом случае калькулятор «по умолчанию» подсчитает результат с учетом наименее благоприятных условий.

Можно рассмотреть на примере. Имеем план дома (взят совершенно произвольный).

Регион с уровнем минимальных температур в пределах -20 ÷ 25 °С. Преобладание зимних ветров = северо-восточные. Дом одноэтажный, с утепленным чердаком. Утепленные полы по грунту. Выбрана оптимальное диагональное подключение радиаторов, которые будут устанавливаться под подоконниками.

Составляем таблицу примерно такого типа:

Помещение, его площадь, высота потолка. Утепленность пола и "соседство" сверху и снизу Количество внешних стен и их основное расположение относительно сторон света и "розы ветров". Степень утепления стен Количество, тип и размер окон Наличие входных дверей (на улицу или на балкон) Требуемая тепловая мощность (с учетом 10% резерва)
Площадь 78,5 м² 10,87 кВт ≈ 11 кВт
1. Прихожая. 3,18 м². Потолок 2.8 м. Утеленный пол по грунту. Сверху - утепленный чердак. Одна, Юг, средняя степень утепления. Подветренная сторона Нет Одна 0,52 кВт
2. Холл. 6,2 м². Потолок 2.9 м. Утепленный пол по грунту. Сверху - утепленный чердак Нет Нет Нет 0,62 кВт
3. Кухня-столовая. 14,9 м². Потолок 2.9 м. Хорошо утепленный пол по грунту. Свеху - утепленный чердак Две. Юг-Запад. Средняя степень утепления. Подветренная сторона Два, однокамерный стеклопакет, 1200 × 900 мм Нет 2.22 кВт
4. Детская комната. 18,3 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север - Запад. Высокая степень утепления. Наветренная Два, двухкамерный стеклопакет, 1400 × 1000 мм Нет 2,6 кВт
5. Спальная. 13,8 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север, Восток. Высокая степень утепления. Наветренная сторона Одно, двухкамерный стеклопакет, 1400 × 1000 мм Нет 1,73 кВт
6. Гостиная. 18,0 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак Две, Восток, юг. Высокая степень утепления. Параллельно направлению ветра Четыре, двухкамерный стеклопакет, 1500 × 1200 мм Нет 2,59 кВт
7. Санузел совмещенный. 4,12 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак. Одна, Север. Высокая степень утепления. Наветренная сторона Одно. Деревянная рама с двойным остеклением. 400 × 500 мм Нет 0,59 кВт
ИТОГО:

Затем, пользуясь размешенным ниже калькулятором производим расчет для каждого помещения (уже с учетом 10% резерва). С использованием рекомендуемого приложения это не займет много времени. После этого останется просуммировать полученные значения по каждой комнате – это и будет необходимая суммарная мощность системы отопления.

Результат по каждой комнате, кстати, поможет правильно выбрать требуемое количество радиаторов отопления – останется только разделить на удельную тепловую мощность одной секции и округлить в большую сторону.

Квитанции за коммунальные услуги, пришедшие в этом месяце в почтовые ящики жителей Волгограда, вызвали настоящий шок у горожан. Месячная «коммуналка» двухкомнатных квартир переваливала за пять тысяч рублей, однокомнатных – за четыре. Больше всего вопросов вызвали суммы за отопление.

Разобраться с начислением платы за отопление в многоквартирных домах помогли в «Концессиях теплоснабжения».

– И хотя ресурсоснабжающая организация не занимается расчетным обслуживанием, мы готовы разбираться в платежах за тепло вместе с потребителями, – говорят в «Концессиях» – Разбираться будем на примере макета единого платежного документа, рекомендованного Инспекцией Госжилнадзора Волгоградской области.

Итак, как проверить расчеты: правильно ли вам начислена плата за отопление?

Если есть общедомовой теплосчетчик

Если в многоквартирном доме установлен общедомовой прибор учета, то плата рассчитывается исходя из показаний прибора учета (ПУ).

Ищем в платежном документе таблицу «Сведения по общедомовым ПУ для расчета в текущем периоде». В таблице находим строку «Отопление». В графе «ОДПУ» указаны цифры, в нашем примере это 171,925. Это количество тепла в гигакалориях (Гкал), потребленное всем домом в прошедшем месяце.

В блоке информации слева от этой таблицы указаны общие сведения о доме, в том числе «Общая площадь жилых помещений» и «Общая площадь нежилых помещений». Если мы сложим эти две цифры, узнаем общую площадь помещений всего дома, в нашем примере она составляет 8091,9 квадратных метра (8051,5 кв. м + 40,4 кв. м = 8091,9 кв. м).

Дальше делим общее количество тепла на общую площадь помещений в доме – получаем расход тепла на один квадратный метр, в нашем случае – 0,02125 Гкал (171,925 Гкал / 8091,9 = 0,02125). Чтобы посчитать, сколько тепла ушло на отопление конкретной квартиры, нужно расход на квадратный метр умножить на общую площадь квартиры: 0,02125 х 64,8 = 1,377 Гкал. Эта цифра и указана в столбце «Объем» строки «Отопление».

Согласно установленным комитетом тарифного регулирования тарифам, одна гигакалория для населения в Волгограде стоит 1643,5 рубля (столбец «Тариф, руб.»).

Теперь мы можем посчитать плату за отопление: 1643,5 х 1,377 = 2263,1 рубля. Если у собственника квартиры нет перерасчетов, рассрочки долга, штрафов управляющей компании в его пользу, начисления совпадут с итоговой суммой за отопление. Однако существуют и другие методики расчета платы за тепло, например, не все управляющие организации включают в расчет площадь нежилых помещений.


Показания общедомовых приборов учета управляющие организации снимают раз в месяц и передают в расчетный центр. Представители собственников имеют право присутствовать при снятии показаний (как правило, этим занимается Совет многоквартирного дома).

Если счетчика нет

В случае, если дом не оборудован прибором учета, плата за отопление рассчитывается исходя из нормативов. В нашем примере платежки норматив указан справочно, для данного дома он составляет 0,023 Гкал на квадратный метр.

Если нет теплосчетчика, для расчета суммы платежа норматив умножается на общую площадь квартиры и на величину тарифа.

Нормативы установлены комитетом тарифного регулирования Волгоградской области для различных типов домов в зависимости от года постройки здания, материала, степени благоустройства и других факторов.

Из этих расчетов видно, что итоговая сумма платы за отопление не зависит ни от потерь тепла в сетях, ни от качества изоляции, ни от длины теплотрассы, подводящей тепло к дому, ни от этажа, на котором расположена квартира, ни даже от количества зарегистрированных в ней жильцов.

Хозяева жилья платят только за то тепло, которое поступило в их дом, – по нормативу либо по счетчику, который устанавливается на входе в дом. В этом случае общее количество потребленного тепла делится на всех жителей – пропорционально площади квартир. Поэтому, если у соседей батареи очень горячие, а в вашей квартире еле теплые – это повод добиваться от управляющей компании отладки внутридомовой системы отопления, чтобы тепло было во всех квартирах.

Елена Иванова

Фото Марии Часовитиной

Что это за единица - гигакалория? Как она связана с более привычными киловатт-часами тепловой энергии? Какие конкретно данные нужны для расчета взятого помещением тепла в гигакалориях? Наконец, по каким формулам выполняется расчет? Попытаемся ответить на эти вопросы.

Что это такое

Начнем со смежного определения. Калорией именуется количество энергии, нужное для нагрева 1 грамма воды на 1 градус по Цельсию при атмосферном давлении.

Потому, что если сравнивать с затратами тепла на обогрев помещений одна калория - величина смехотворно малая, в расчетах в большинстве случаев употребляется гигакалория (Гкал), равная одному миллиарду (10^9) калорий.

Применение этой величины предусмотрено "Правилами учета тепловой энергии и теплоносителя", изданными Министерством топливно-энергитеческого комплекса РФ в 1995 году.

Справка: средний норматив потребления тепла по России - 0,0342 гигакалории на квадратный метр неспециализированной площади жилья в месяц. Нормы для различных регионов отличаются в зависимости от климатической территории и определяются местными законодательными органами.

Что такое Гкал в отоплении помещения в более привычных нам величинах?

  • Одной гигакалории достаточно для нагрева 1000 тысячь киллограм воды на один градус.
  • Она соответствует 1162,2222 киловатт-часам.

Для чего это необходимо

Многоквартирные дома

Все весьма легко: гигакалории употребляются в расчетах за тепло. Зная, сколько тепловой энергии осталось в здании, потребителя возможно выставить в полной мере конкретный счет. Для сравнения - при работе центрального отопления без счетчика счет выставляется по площади отапливаемого помещения.

Наличие теплосчетчика подразумевает горизонтальную последовательную либо коллекторную разводку труб отопления: в квартиру заведены отводы стояков подачи и обратки; конфигурация внутриквартирной системы определяется обладателем. Такая схема характерна для новостроек и, среди другого, разрешает гибко регулировать расход тепла, выбирая между экономией и комфортом.


Как осуществляется регулировка?

  • Дросселированием самих отопительных устройств . Дроссель разрешает сократить проходимость радиатора, снизив его температуру и затраты тепла.
  • Установкой неспециализированного термостата на обратном трубопроводе . Расход теплоносителя будет определяться температурой в помещении: при охлаждении воздуха он будет возрастать, при нагреве - уменьшаться.

Частные дома

Обладателю коттеджа занимательна в первую очередь цена гигакалории тепла, взятой из различных источников. Мы разрешим себе привести примерные значения для Новосибирской области для тарифов и расценок 2013 года.

Для сравнения: центральное отопления на момент сбора статистических данных обходилось в 1467 рублей за гигакалорию.

Счетчики

Какие конкретно данные необходимы для учета тепла?

Додуматься несложно:

  1. Расход теплоносителя, проходящего через отопительные устройства.
  2. Его температура на выходе и входе из соответствующего участка контура.

Для измерения расхода употребляются счетчики двух типов.

Счетчики с крыльчаткой

Предназначенные для отопления и ГВС счетчики отличаются от употребляющихся на холодной воде только материалом крыльчатки: он более стоек к большим температурам.

Сам механизм - тот же:

  • Поток теплоносителя заставляет вращаться крыльчатку.
  • Она передает вращение механизму учета без яркого сотрудничества, при помощи постоянного магнита.

Не обращая внимания на простоту конструкции, счетчики имеют низкий порог срабатывания и хорошо защищены от подтасовки данных: каждая попытка затормозить крыльчатку внешним магнитным полем упрется в наличие у механизма антимагнитного экрана.

Счетчики с регистратором перепада

Устройство второго типа счетчиков основано на законе Бернулли, который говорит, что статическое давление в потоке жидкости либо газа обратно пропорционально его скорости.

Как применять эту особенность гидродинамики для подсчета расхода теплоносителя? Достаточно преградить ему путь подпорной шайбой. Падение давления на шайбе будет прямо пропорционально скорости потока через нее. Регистрируя давление парой датчиков, несложно в настоящем времени вычислять расход.

Любопытно: устройство счетчика подразумевает наличие в нем электроники. Большинство моделей счетчиков этого типа выдает не только сырые данные - расход воды и ее температуру - но и высчитывает фактическое применение тепла. Управляющий модуль таких устройств имеет порт для подключения к компьютеру и может перенастраиваться своими руками под изменившуюся схему расчетов.

А что, в случае если речь заходит не о закрытом контуре отопления, а об открытой системе с возможностью отбора ГВС? Как регистрировать расход тёплой воды?

Решение разумеется: в этом случае датчики давления и подпорные шайбы ставятся и на подающий, и на обратный трубопроводы отопления. Отличие расхода теплоносителя между нитками и будет показывать на то количество тёплой воды, которое было использовано на хознужды.

Формулы

Как вычислить Гкал на отопление при наличии счетчиков на обеих нитках для открытой (с ГВС) либо закрытой (без ГВС) системы?

Формула расчета имеет форму Q=((V1*(T1-T))-(V2*(T2-T)))/1000.

  • Q - искомое количество тепловой энергии в гигакалориях.
  • V1 и V2 - расход теплоносителя через подачу и обратку в тоннах.

Полезно: счетчики по понятным обстоятельствам показывают расход в кубометрах, а не в тоннах. Фактическая масса кубометра тёплой технической воды пара отличается от одной тонны; но отличие на фоне погрешностей счетчика пренебрежимо мелка, исходя из этого возможно смело применять показания счетчика в кубометрах.

  • Т1-температура на входе в контур (подача).
  • Т2 - температура на выходе из контура (обратка).
  • Т - температура холодной воды, подпитывающей автостраду для компенсации утрат. В отопительный сезон она принимается равной +5 С, вне сезона - +15 С.
  • Деление на 1000 нужно как раз для того, чтобы получить итог не в мега-, а в гигакалориях. В другом случае нам было нужно бы пересчитывать расход воды в тысячи тысячь киллограм.

Так, при расходе счетчика на подаче в 52 м3, на обратке в 44 м3, температурах подачи 95 С и обратки 70 С в доме останется ((52*(95-5))-(44*(70-5)))/1000=1,82 Гкал тепла.


Увидьте: расход воды оплачивается раздельно. Мы считаем только расход тепловой энергии.

Как выглядит инструкция согласно расчетам, в случае если у вас стоит только один счетчик - на подаче? Очевидно, подразумевается, что мы говорим о закрытой системе (без ГВС).

Формула расчета имеет форму Q=V*(T1-T)/1000.

К примеру, при расходе воды в 52 м3 и температуре теплоносителя в 95 С на подаче в квартире останется 52*(95-5)/1000=4,68 гигакалории.Как легко подметить, такая система подсчета куда менее выгодна потребителю.


Заключение

Сохраняем надежду, что предложенная вниманию читателя информация окажет помощь ему сэкономить на отоплении помещения. Как неизменно, дополнительные тематические материалы возможно отыскать в прикрепленном видео. Удач!

Больше всего в морозные зимние месяцы все люди ждут Нового года, а меньше всего - квитанций за отопление. Особенно не любят их жители многоквартирных домов, которые сами не имеют возможности контролировать количество поступающего тепла, и часто счета за него оказываются просто фантастическими. В большинстве случаев в таких документах в качестве единицы измерения стоит Гкал, которая расшифровывается как «гигакалория». Давайте узнаем, что это такое, как рассчитать гигакалории и перевести в другие единицы.

Что называется калорией

Сторонникам здорового питания или тем, кто усиленно следит за своим весом, знакомо такое понятие, как калория. Это слово означает количество энергии, получаемой в результате переработки организмом съеденной пищи, которую необходимо использовать, иначе человек начнет поправляться.

Как ни парадоксально, но эта же величина используется для измерения количества тепловой энергии, используемой для обогрева помещений.

В качестве сокращения эта величина обозначается как «кал», или в английском cal.

В метрической системе измерений эквивалентом калории считается джоуль. Так, 1 кал = 4,2 Дж.

Значение калорий для жизни человека

Помимо разработки различных диет для похудения, эта единица используется для измерения энергии, работы и теплоты. В связи с этим распространено такое понятия, как «калорийность» - то есть теплота сгораемого топлива.

В большинстве развитых государств при расчете отопления люди платят уже не за количество потребленных кубометров газа (если оно газовое), а именно за его калорийность. Иными словами, потребитель платит за качество используемого топлива: чем оно выше, тем меньше газа придется израсходовать для нагрева. Такая практика снижает возможность разбавки используемого вещества другими, более дешевыми и менее калорийными соединениями.

Гигакалория - это что такое и сколько в ней калорий?

Как понятно из определения, размер 1 калории невелик. По этой причине для вычисления больших величин, особенно в энергетике, она не используется. Вместо нее употребляется такое понятие, как гигакалория. Это величина, равная 10 9 калорий, а записывается она в виде сокращения «Гкал». Получается, что в одной гигакалории один миллиард калорий.

Помимо этой величины иногда используется и несколько меньшая - Ккал (килокалория). В ней помещается 1000 кал. Таким образом, можно считать, что одна гигакалория - это миллион килокалорий.

Стоит иметь в виду, что иногда килокалорию записывают просто как «кал». Из-за этого возникает путаница, и в отдельных источниках указывается, что в 1 Гкал - 1 000 000 кал, хотя в реальности речь идет о 1 000 000 Ккал.

Гекакалория и гигакалория

В энергетике в большинстве случаев используется в качестве единицы измерения Гкал, но ее часто путают с таким понятием, как «гекакалория» (она же гектокалория).

В связи с этим сокращение «Гкал» некоторые люди расшифровывают как «гекакалория» или «гектокалория». Однако это неправильно. На самом деле вышеупомянутых единиц измерения не существует, и исползование их в речи - результат безграмотности, и не более того.

Гигакалория и гигакалория/час: в чем разница

Помимо рассматриваемой вымышленной величины, в квитанциях иногда встречается такое сокращение, как «Гкал/час». Что же оно означает и чем отличается от обычной гигакалории?

Данная единица измерения показывает, какое количество энергии было использовано за один час.

В то время как просто гигакалория - это величина измерения потребленного тепла за неопределенный промежуток времени. Лишь от потребителя зависит, какие временные рамки будут указаны в этой категории.

Значительно реже встречается сокращение Гкал/м 3. Оно означает, сколько гигакалорий нужно использовать, чтобы нагреть один кубический метр вещества.

Формула гигакалории

Рассмотрев определение изучаемой величины, стоит, наконец-то, узнать, как же вычислить, сколько гигакалорий используется для обогрева помещения в отопительный сезон.

Для особо ленивых людей в интернете существует масса онлайн-ресурсов, где представлены специально запрограммированные калькуляторы. В них достаточно ввести свои числовые данные - и они сами высчитают количество потребляемых гигакалорий.

Однако неплохо бы уметь это делать самостоятельно. Для этого существует несколько вариантов формулы. Наиболее простая и понятная среди них следующая:

Тепловая энергия (Гкал/час) = (М 1 х (Т 1 -Т хв)) - (М 2 х (Т 2 -Т хв)) /1000, где:

  • М 1 - масса теплопереносящего вещества, которое подается по трубопроводу. Измеряется в тоннах.
  • М 2 - масса теплопереносящего вещества, возвращающегося по трубопроводу.
  • Т 1 - температура теплоносителя в подающем трубопроводе, измеряется в Цельсиях.
  • Т 2 - температура теплоносителя в возвращающегося обратно.
  • Т хв - температура холодного источника (воды). Обычно равна пяти поскольку именно такова минимальная температура воды в трубопроводе.

Почему ЖКХ при расчетах за отопление завышают количество потраченной энергии

Проводя собственные расчеты, стоит обратить внимание, что ЖКХ слегка завышают нормативы потребления тепловой энергии. Мнение, что они на этом пытаются дополнительно подзаработать, ошибочно. Ведь в стоимость 1 Гкал уже включено и обслуживание, и зарплаты, и налоги, и дополнительная прибыль. Такая "надбавка" связана с тем, что при транспорте горячей жидкости по трубопроводу в холодное время года она имеет тенденцию остывать, то есть происходят неизбежные теплопотери.

В цифрах это выглядит следующим образом. Согласно нормативам, температура воды в трубах для обогрева должна минимум составлять +55 °C. А если учесть, что минимальная t воды в энергосистемах равна +5 °C, то нагреть ее надо на 50 градусов. Получается, что на каждый кубометр используется 0,05 Гкал. Однако, чтобы компенсировать теплопотери, этот коэффициент завышают до 0,059 Гкал.

Перевод Гкал в кВт/час

Тепловая энергия может измеряться в различных единицах, однако в официальной документации от ЖКХ она исчисляется в Гкал. Поэтому стоит знать, как перевести в гигакалории другие единицы.

Проще всего это сделать тогда, когда известно соотношения этих величин. К примеру, стоит рассмотреть ватты (Вт), в которых измеряется энергетическая мощность большинства котлов или обогревателей.

Перед тем как рассмотреть перевод в эту величину Гкал, стоит вспомнить, что, как и калория, ватт невелик. Поэтому чаще используют кВт (1 киловатт, равен 1000 ватт) или мВт (1 мегаватт равняется 1000 000 ватт).

Кроме того, важно помнить, что в Вт (кВт, мВт) измеряют мощность, а вот для расчета количества потребленной/произведенной электроэнергии используют В связи с этим рассматривается не перевод гигакалорий в киловатты, а перевод Гкал в кВт/ч.

Как же это сделать? Чтобы не мучиться с формулами, стоит запомнить «волшебное» число 1163. Именно столько киловатт энергии необходимо потратить за час, чтобы получить одну гигакалорию. На практике при переводе с одной единицы измерения в другую просто необходимо умножить количество Гкал на 1163.

Например, давайте переведем в кВт/час 0,05 Гкал, необходимых для нагрева одного кубометра воды на 50 °C. Получается: 0,05 х 1163 = 58,15 кВт/час. Эти вычисления особо помогут тем, кто размышляет о смене газового отопления на более экологичное и экономное электрическое.

Если речь идет об огромных объемах, можно переводить не в киловатты, а в мегаватты. В таком случае умножать нужно не на 1163, а на 1,163, поскольку 1 мВт = 1000 кВт. Или просто разделить полученный в киловаттах результат на тысячу.

Перевод в Гкал

Иногда необходимо осуществлять и обратный процесс, то есть высчитывать, сколько Гкал содержится в одном кВт/часе.

При переводе в гигакалории количество киловатт-часов необходимо умножить на другое «волшебное» число - 0,00086.

Правильность этого можно проверить, если взять данные из предыдущего примера.

Итак, в нем было вычислено, что 0,05 Гкал = 58,15 кВт/час. Теперь стоит взять этот результат и умножить его на 0,00086: 58,15 х 0,00086 = 0,050009. Несмотря на небольшое отличие, он практически полностью совпадает с исходными данными.

Как и в предыдущих расчетах, необходимо учитывать тот факт, что при работе с особо крупными объемами веществ нужно будет переводить не киловатты, а мегаватты в гигакалории.

Как же это делается? В данном случае опять нужно учесть, что 1 мВт = 1000 кВт. Исходя из этого, в «волшебном» числе передвигается запятая на три нуля, и вуаля, получается 0,86. Именно на него и нужно множить, чтобы осуществить перевод.

Кстати, небольшая несостыковка в ответах связана с тем, что коэффициент 0,86 - это округленный вариант числа 0.859845. Конечно, для более точных расчетов стоит пользоваться им. Однако если речь идет всего лишь о количестве используемой энергии для отопления квартиры или домика - лучше упростить.