Индукционный нагрев металлов. Высокочастотный индукционный нагрев

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ

Начальный период. Индукционный нагрев проводников основан на физическом явлении электромагнитной индукции, открытом М. Фарадеем в 1831 г. Теорию индукционного нагрева начали разрабатывать О. Хэвисайд (Англия, 1884 г.), С. Ферранти, С. Томпсон, Ивинг. Их работы явились основой для создания техники индукционного нагрева. Так как при индукционном нагреве теплота выделяется в проводящем теле - слое, равном глубине проникновения электромагнитного поля, то появляются возможности точного управления температурой для обеспечения качественного нагрева при высокой производительности. Другим преимуществом является бесконтактность нагрева.

Индукционные канальные печи с открытым каналом. Одна из первых известных конструкций индукционной канальной печи (ИКП) была предложена С. Ферранти (Италия) в 1887 г. Печь имела керамический канал, а плоские катушки индуктора были размещены над и под этим каналом. В 1890г. Е.А. Колби (США) предложил конструкцию печи, у которой индуктор охватывает круговой канал снаружи.

Первую промышленную печь со стальным сердечником и индуктором, размещенным внутри канала (рис. 7.7), создал в 1900 г. Кьеллин (Швеция). Мощность печи 170 кВт, емкость до 1800 кг, частота 15 Гц. Питание от специального генератора пониженной частоты, что необходимо из-за низкого значения коэффициента мощности. К 1907 г. в эксплуатации находились 14 подобных печей.

Рис. 7.7. Эскиз индукционной печи с открытым каналом, созданной Кьеллииым1 - канал; 2 - индуктор; 3 - магнитопровод

В 1905 г. Рёхелинг-Роденхаузер (Германия) сконструировал многофазные канальные печи (с двумя и тремя индукторами), в которых каналы соединены с ванной, питание от сети 50 Гц. В последующих конструкциях печей использовались также закрытые каналы для плавки цветных металлов. В 1918 г. В. Рон (Германия) построил вакуумную ИКП по типу печи Кьеллина (давление 2–5 мм рт.ст.), что позволило получить металл с лучшими механическими свойствами.

В связи с рядом преимуществ печей с закрытым каналом развитие печей с открытым каналом приостановилось. Однако были продолжены попытки использования таких печей для плавки стали.

В 30-х годах в США для переплава скрапа нержавеющей стали использовалась однофазная ИКП емкостью 6 т с открытым каналом и питанием от генератора мощностью 800 кВт и частотой 8,57 Гц. Печь работала в дуплекс-процессе с дуговой печью. В 40–50-е годы в Италии применялись ИКП с открытым каналом для плавки стали емкостью 4–12 т, изготовленные фирмой «Таглиаферри». В дальнейшем от использования таких печей отказались, так как они уступали по своим характеристикам дуговым и индукционным тигельным сталеплавильным печам.

Индукционные канальные печи с закрытым каналом. С 1916 г. стали разрабатываться вначале опытные, а затем промышленные ИКП с закрытым каналом. Серия ИКП с закрытым каналом разработана фирмой «Аякс - Уатт» (США). Это шахтные однофазные печи с вертикальным каналом для плавки медноцинковых сплавов мощностью 75 и 170 кВ?А и емкостью 300 и 600 кг. Они явились основой для разработок ряда фирм.

В те же годы во Франции были изготовлены шахтные печи с горизонтальной трехфазной индукционной единицей (мощностью 150, 225 и 320 кВт). В Англии фирма «Дженерал электрик лимитед» предложила модификацию печи с двумя каналами на индуктор, при их несимметричном расположении, что вызывает циркуляцию расплава и снижение перегрева.

Печи Э. Русса (Германия) выпускались с двумя и тремя каналами на индуктор (вертикальное и горизонтальное исполнение). Э. Руссом также была предложена конструкция сдвоенной индукционной единицы (ИЕ), подключаемой к двум фазам.

В СССР в 30-е годы ИКП по типу печей фирмы «Аякс - Уатт» стали выпускаться на Московском электрозаводе. В 50-е годы ОКБ «Электропечь» разработало печи для плавки меди и ее сплавов емкостью 0, 4–6,0 т, а затем и 16 т. В 1955 г. на заводе в г. Белая Калитва пущена ИКП для плавки алюминия емкостью 6 т.

В 50-е годы в США и Западной Европе ИКП стали широко применяться в качестве миксеров при плавке чугуна в дуплекс-процессе с вагранкой или дуговой электропечью. Для увеличения мощности и снижения перегрева металла в канале разрабатывались конструкции ИЕ с однонаправленным движением расплава (Норвегия). Тогда же были разработаны отъемные ИЕ. В 70-е годы фирма «Аякс магнетермик» разработала сдвоенные ИЕ, мощность которых в настоящее время достигает 2000 кВт. Подобные разработки в те же годы выполнены и во ВНИИЭТО. В разработках ИКП различных типов активно участвовали Н.В. Веселовский, Э.П. Леонова, М.Я. Столов и др.

В 80-е годы развитие ИКП в нашей стране и за рубежом было направлено на увеличение областей применения и расширение технологических возможностей, например применение ИКП для получения труб из цветных металлов методом вытягивания из расплава.

Индукционные тигельные печи. Так как индукционные тигельные печи (ИТП) малой емкости могут эффективно работать только на частотах выше 50 Гц, то их создание сдерживалось из-за отсутствия соответствующих источников питания - преобразователей частоты. Тем не менее в 1905–1906 гг. ряд фирм и изобретателей предложили и запатентовали ИТП, к ним относятся фирма «Шнейдер - Крезо» (Франция), О. Цандер (Швеция), Герден (Англия). В это же время конструкцию ИТП разработал А.Н. Лодыгин (Россия).

Первую промышленную ИТП с искровым высокочастотным генератором разработал в 1916 г. Э.Ф. Нортруп (США). С 1920 г. эти печи стала выпускать фирма «Аякс электротермию). В это же время ИТП с питанием от вращающегося искрового разрядника разрабатывает Ж. Рибо (Франция). Фирма «Метрополитен - Виккерс» создала ИТП высокой и промышленной частоты. Вместо искровых генераторов использовались машинные преобразователи с частотой до 3000 Гц и мощностью 150 кВ?А.

В.П. Вологдин в 1930–1932 гг. создал промышленные ИТП емкостью 10 и 200 кг с питанием от машинного преобразователя частоты. В 1937 г. он же построил ИТП с питанием от лампового генератора. В 1936 г. А.В. Донской разработал универсальную индукционную печь с ламповым генератором мощностью 60 кВ?А.

В 1938 г. для питания ИТП (мощность 300 кВт, частота 1000 Гц) фирма «Броун - Бовери» использовала инвертор на многоанодном ртутном вентиле. С 60-х годов стали использоваться тиристорные инверторы для питания индукционных установок. С увеличением емкости ИТП стало возможным эффективное применение питания током промышленной частоты.

В 40–60-х годах ОКБ «Электропечь» разработало несколько типов ИТП: повышенной частоты для плавки алюминия емкостью 6 т (1959 г.), чугуна емкостью 1 т (1966 г.). В 1980 г. на заводе в г. Баку изготовлена печь емкостью 60 т для плавки чугуна (разработка ВНИИЭТО по лицензии фирмы «Броун - Бовери»). Большой вклад в разработку ИТП во ВНИИЭТО внесли Э.П. Леонова, В.И. Кризенталь, А.А. Простяков и др.

В 1973 г. фирма «Аякс магнетермик» совместно с исследовательской лабораторией фирмы «Дженерал моторе» разработала и ввела в эксплуатацию горизонтальную тигельную печь непрерывного действия для плавки чугуна емкостью 12 т и мощностью 11 МВт.

Начиная с 50-х годов стали развиваться специальные виды индукционной плавки металлов:

вакуумная в керамическом тигле;

вакуумная в гарнисаже;

вакуумная в холодном тигле;

в электромагнитном тигле;

во взвешенном состоянии;

с использованием комбинированного нагрева.

Вакуумные индукционные печи (ВИП) до 1940 г. применялись только в лабораторных условиях. В 50-х годах некоторые фирмы, в частности «Хереус», стали разрабатывать промышленные ВИП, единичная емкость которых стала быстро возрастать: 1958 г. - 1–3 т, 1961–5 т, 1964–15–27 т, 1970–60 т. В 1947 г. МосЗЭТО изготовил первую вакуумную печь емкостью 50 кг, а с 1949 г. начал серийное производство ВИП емкостью 100 кг. В середине 80-х годов производственное объединение «Сибэлектротерм» по разработкам ВНИИЭТО изготавливало модернизированные ВИП емкостью 160, 600 и 2500 кг для плавки специальных сталей.

Индукционная плавка химически активных сплавов в гарнисажных печах и печах с медным водоохлаждаемым (холодным) тиглем стала применяться в 50-х годах. Печь с порошкообразным гарнисажем была разработана Н.П. Глухановым, Р.П. Жежериным и др. в 1954 г., а печь с монолитным гарнисажем - М.Г. Коганом в 1967 г. Идея индукционной плавки в холодном тигле предложена еще в 1926 г. в Германии фирмой «Сименс - Гальске», но применения не нашла. В 1958 г. В ИМЕТ совместно с ВНИИ токов высокой частоты им. В.П. Вологдина (ВНИ-ИТВЧ) под руководством А.А. Фогеля проведены опыты по индукционной плавке титана в холодном тигле.

Стремление снизить загрязнение металла и тепловые потери в холодном тигле привели к использованию электромагнитных сил для отжатия металла от стенок, т.е. к созданию «электромагнитного тигля» (Л.Л. Тир, ВНИИЭТО, 1962 г.)

Плавка металлов во взвешенном состоянии для получения особо чистых металлов была предложена в Германии (О. Мук) еще в 1923 г., но не получила распространения из-за отсутствия источников питания. В 50-е годы этот метод начал развиваться во многих странах. В СССР много работали в этом направлении сотрудники ВНИИТВЧ под руководством А.А. Фогеля.

Плавильные ИКП и ИТП комбинированного нагрева стали применяться с 50-х годов вначале с использованием мазутных и газовых горелок, например ИКП для переплава алюминиевой стружки (Италия) и ИТП для чугуна (Япония). Позднее получили распространение плазменно-индукционные тигельные печи, например разработанная ВНИИЭТО в 1985 г. серия опытно-промышленных печей емкостью 0,16–1,0 т.

Установки индукционной поверхностной закалки. Первые опыты по индукционной поверхностной закалке проведены в 1925 г. В.П. Вологдиным по инициативе инженера Путиловского завода Н.М. Беляева, которые были признаны неудачными, так как в то время стремились к сквозной закалке. В 30-х годах В.П. Вологдин и Б.Я. Романов возобновили эти работы и в 1935 г. получили патенты на закалку с использованием токов высокой частоты. В 1936 г. В.П. Вологдин и А.А. Фогель получили патент на индуктор для закалки шестерен. В.П. Вологдин и его сотрудники разрабатывали все элементы закалочной установки: вращающийся преобразователь частоты, индукторы и трансформаторы (рис. 7.8).

Рис. 7.8. Закалочная установка для последовательной закалки

1 - закаливаемое изделие; 2 - индуктор; 3 - закалочный трансформатор; 4 - преобразователь частоты; 5 - конденсатор

С 1936 г. Г.И. Бабат и М.Г. Лозинский на заводе «Светлана» (Ленинград) исследовали процесс индукционной закалки с использованием высоких частот при питании от лампового генератора. С 1932 г. закалка током средней частоты стала внедряться фирмой ТОККО (США).

В Германии в 1939 г. Г.В. Зойлен осуществил поверхностную закалку коленчатых валов на заводах фирмы АЕГ. В 1943 г. К. Кегель предложил специальную форму индуктирующего провода для закалки зубчатого колеса.

Широкое применение поверхностной закалки началось с конца 40-х годов. За 25 лет с 1947 г. ВНИИТВЧ разработал свыше 300 закалочных устройств, в том числе введены в эксплуатацию автоматическая линия для закалки коленчатых валов и установка для закалки железнодорожных рельсов по всей длине (1965 г.). В 1961 г. пущена первая установка для закалки шестерен из стали пониженной прокаливаемости на автозаводе им. Лихачева (ЗИЛ) (технология разработана К.З. Шепеляковским).

Одним из направлений развития индукционной термообработки в последние годы стали технологии закалки и отпуска труб нефтяного сортамента и газопроводных труб большого диаметра (820–1220 мм), строительных арматурных стержней, а также упрочнения железнодорожных рельсов.

Установки сквозного нагрева. Применение индукционного нагрева металлов для различных целей, кроме плавки, на первом этапе носило поисковый характер. В 1918 г. М.А. Бонч-Бруевич, а затем и В.П. Вологдин применили для нагрева анодов электронных ламп при их вакуумировании (дегазации) токи высокой частоты. В конце 30-х годов в лаборатории завода «Светлана» проводились опыты по использованию индукционного нагрева до температуры 800–900°С при обработке стального вала диаметром 170 и длиной 800 мм на токарном станке. Использовался ламповый генератор мощностью 300 кВт и частотой 100–200 кГц.

С 1946 г. в СССР начались работы по использованию индукционного нагрева при обработке давлением. В 1949 г. введен в эксплуатацию первый кузнечный нагреватель на ЗИЛе (ЗИСе). Эксплуатация первой индукционной кузницы начата на Московском заводе малолитражных автомобилей (МЗМА, позднее АЗЛК) в 1952 г. Интересная двухчастотная установка (60 и 540 Гц) для нагрева стальных заготовок (сечение - квадрат 160x160 мм) под обработку давлением была запущена в Канаде в 1956 г. Подобная же установка разработана в ВНИИТВЧ (1959 г.). Промышленная частота используется при этом для нагрева до точки Кюри.

Для прокатного производства в 1963 г. ВНИИТВЧ изготовил нагреватель слябов (габариты 2,5x0,38x1,2 м) мощностью 2000 кВт на частоту 50 Гц.

В 1969 г. на металлургическом заводе фирмы «Маклаут стил корп.» (США) применен индукционный нагрев стальных слябов массой около 30 т (габариты 7,9x0,3x1,5 м) с использованием шести технологических линий (18 индукторов промышленной частоты общей мощностью 210 МВт).

Индукторы имели специальную форму, обеспечивающую равномерность нагрева сляба. Работы по применению индукционного нагрева в металлургии велись также и во ВНИИЭТО (П.М. Чайкин, С.А. Яицков, А.Э. Эрман).

В конце 80-х годов в СССР индукционный нагрев использовался приблизительно в 60 кузнечных цехах (прежде всего на заводах автотракторной и оборонной промышленности) с общей мощностью индукционных нагревателей до 1 млн. кВт.

Низкотемпературный нагрев на промышленной частоте. В 1927–1930 гг. на одном из уральских оборонных заводов начались работы по индукционному нагреву на промышленной частоте (Н.М. Родигин). В 1939 г. там с успехом работали достаточно мощные индукционные нагревательные установки для термообработки изделий из легированной стали.

В ЦНИИТмаше (В.В. Александров) также проводились работы по применению промышленной частоты для термообработки, нагрева под посадку и т.д. Ряд работ по низкотемпературному нагреву выполнен под руководством А.В. Донского. В НИИжелезобетона (НИИЖБ), Фрунзенском политехническом институте и других организациях в 60–70-х годах проводились работы по термообработке железобетонных изделий с использованием индукционного нагрева на частоте 50 Гц. ВНИИЭТО также разработал ряд промышленных установок низкотемпературного нагрева для подобных целей. Разработки МЭИ (А.Б. Кувалдин) в области индукционного нагрева ферромагнитной стали были использованы в установках для подогрева деталей под наплавку, термообработки стали и железобетона, обогрева химических реакторов, пресс-форм и др. (70–80-е годы).

Высокочастотная зонная плавка полупроводников. Метод зонной плавки был предложен в 1952 г. (В.Г. Пфанн, США). Работы по высокочастотной бестигельной зонной плавке в нашей стране начались в 1956 г., и во ВНИИТВЧ был получен монокристалл кремния диаметром 18 мм. Созданы различные модификации установок типа «Кристалл» с индуктором внутри вакуумной камеры (Ю.Э. Недзвецкий). В 50-е годы изготовление установок для вертикальной бестигельной зонной плавки кремния с индуктором снаружи вакуумной камеры (кварцевой трубы) осуществлялось на заводе «Платиноприбор» (Москва) совместно с Государственным институтом редких металлов (Гиредмет). Начало серийного производства установок «Кристалл» для выращивания монокристаллов кремния относится к 1962 г. (на Таганрогском ЗЭТО). Диаметр получаемых монокристаллов достиг 45 мм (1971 г.), а позднее и свыше 100 мм (1985 г.)

Высокочастотная плавка оксидов. В начале 60-х годов Ф.К. Монфорт (США) провел плавку оксидов в индукционной печи (выращивание монокристаллов ферритов при использовании токов высокой частоты - радиочастот). Тогда же А.Т Чэпмен и Г.В. Кларк (США) предложили технологию переплавления поликристаллического оксидного блока в холодном тигле. В 1965 г. Ж. Рибо (Франция) получил расплавы оксидов урана, тория и циркония при использовании радиочастот. Плавка этих оксидов происходит при высоких температурах (1700–3250 °С), и поэтому требуется большая мощность источника питания.

В СССР технология высокочастотной плавки оксидов разработана в Физическом институте АН СССР (A.M. Прохоров, В.В. Осико). Оборудование разрабатывали ВНИИТВЧ и Ленинградский электротехнический институт (ЛЭТИ) (Ю.Б. Петров, А.С. Васильев, В.И. Добровольская). Созданные ими установки «Кристалл» в 1990 г. имели общую мощность свыше 10 000 кВт, на них производились сотни тонн оксидов высокой степени чистоты в год.

Высокочастотный нагрев плазмы. Явление высокочастотного разряда в газе известно с 80-х годов XIX в. В 1926–1927 гг. Дж.Дж. Томсон (Англия) показал, что безэлектродный разряд в газе создается индуцированными токами, а Дж. Таунсенд (Англия, 1928 г.) объяснял разряд в газе действием электрического поля. Все эти исследования проводились при пониженных давлениях.

В 1940–1941 гг. Г.И. Бабат на заводе «Светлана» при дегазации электронных ламп с использованием высокочастотного нагрева наблюдал плазменный разряд, а затем впервые получил разряд при атмосферном давлении.

В 50-е годы в разных странах проводились работы по высокочастотной плазме (Т.Б. Рид, Ж. Рибо, Г. Баркхофф и др.). В СССР они велись с конца 50-х годов в Ленинградском политехническом институте (А.В. Донской, С.В. Дресвин), МЭИ (М.Я. Смелянский, С.В. Кононов), ВНИТВЧ (И.П. Дашкевич) и др. Исследовались разряды в различных газах, конструкции плазмотронов и технологии с их использованием. Были созданы высокочастотные плазмотроны с кварцевой и с металлической (для мощностей до 100 кВт) водоохлаждаемой (создана в 1963 г.) камерами.

В 80-х годах высокочастотные плазмотроны мощностью до 1000 кВт на частоты 60 кГц - 60 МГц применялись для получения особо чистого кварцевого стекла, пигментного диоксида титана, новых материалов (например, нитридов и карбидов), особо чистых ультрадисперсных порошков и разложения отравляющих веществ.

Из книги История электротехники автора Коллектив авторов

7.1.1. РЕЗИСТИВНЫЙ НАГРЕВ Начальный период. Первые эксперименты по нагреву проводников электрическим током относятся к XVIII в. В 1749 г. Б. Франклин (США) при исследовании разряда лейденской банки обнаружил нагрев и расплавление металлических проволочек, а позднее по его

Из книги автора

7.1.2. ЭЛЕКТРОДУГОВОЙ НАГРЕВ Начальный период. В 1878–1880 гг. В. Сименс (Англия) выполнил ряд работ, которые легли в основу создания дуговых печей прямого и косвенного нагрева, в том числе однофазной дуговой печи емкостью 10 кг. Им было предложено использовать магнитное поле для

Из книги автора

Из книги автора

7.7.5. ПЛАЗМЕННЫЙ НАГРЕВ Начальный период. Начало работ по плазменному нагреву относится к 20-м годам XX в. Сам термин «плазма» ввел И. Ленгмюр (США), а понятие «квазинейтральная» - В. Шоттки (Германия). В 1922 г. X. Гердиен и А. Лотц (Германия) провели опыты с плазмой, полученной при

Из книги автора

7.1.6. ЭЛЕКТРОННО-ЛУЧЕВОЙ НАГРЕВ Начальный период. Техника электронно-лучевого нагрева (плавка и рафинирование металлов, размерная обработка, сварка, термообработка, нанесение покрытий испарением, декоративная обработка поверхности) создана на основе достижений физики,

Из книги автора

7.1.7. ЛАЗЕРНЫЙ НАГРЕВ Начальный период. Лазер (сокращение английского Light Amplification by Stimulated Emission of Radiation) создан во второй половине XX в. и нашел определенное применение в электротехнологии.Идею процесса вынужденного излучения высказал еще А. Эйнштейн в 1916 г. В 40-х годах В.А.

Индукционный нагреватель лежит в основе нового метода отопления жилых домов. Для обогрева агрегат использует электромагнитную энергию. Как теплоноситель в приборе применяется вода. Индукционный котел можно приобрести готовый заводской или сделать его самостоятельно. Об особенностях прибора и его сборке я и расскажу.

Что такое индукционное нагревание

Работает индукционный прибор на энергии, вырабатываемой электромагнитным полем . Ее вбирает в себя носитель тепла, отдавая его затем помещениям:

  1. Создает электромагнитное поле в таком водонагревателе индуктор. Это многовитковая проволочная катушка цилиндрической формы.
  2. Протекая сквозь нее, переменный электроток вокруг катушки генерирует магнитное поле.
  3. Его линии размещаются перпендикулярно вектору электромагнитного потока. При перемещении они воссоздают замкнутую окружность.
  4. Вихревые потоки, создаваемые переменным током, преобразуют энергию электричества в тепло.

Тепловая энергия при индукционном нагревании тратится экономно и при невысокой скорости разогрева. Благодаря этому индукционный прибор доводит воду для системы отопления за небольшой временной период до высокой температуры.

Особенности прибора

Индукционный нагрев осуществляется при помощи трансформатора. Он состоит из пары обмоток:

  • внешней (первичной);
  • короткозамкнутой внутренней (вторичной).

Вихревые токи возникают в глубинной части трансформатора. Они перенаправляют появляющееся электромагнитное поле на вторичный контур. Тот одновременно исполняет функцию корпуса и выступает, как нагревательный элемент для воды.

С ростом плотности вихревых потоков, направленных на сердечник, сначала разогревается он сам, затем - весь тепловой элемент.

Для подачи прохладной воды и отвода подготовленного теплоносителя в отопительную систему индукционный нагреватель оснащается парой патрубков:

  1. Нижний из них устанавливается на входную часть водопровода.
  2. Верхний патрубок - на питающий участок отопительной системы.

Из каких элементов состоит прибор, и каким образом работает

Индукционный водонагреватель состоит из таких конструктивных элементов:

Фото Конструктивный узел

Индуктор .

Он состоит из множества витков медной проволоки. В них и генерируется электромагнитное поле.

Нагревательный элемент .

Это труба из металла или обрезки стальной проволоки, размещаемые внутри индуктора.

Генератор .

Он трансформирует бытовую электроэнергию в высокочастотный электроток. Роль генератора может играть инвертор от сварочного аппарата.

При взаимодействии всех составляющих прибора происходит выработка тепловой энергии и передача ее воде. Схема работы агрегата такова:

  1. Генератор продуцирует высокочастотный электроток. Затем он передает его индукционной катушке.
  2. Та, восприняв ток, трансформирует его в электрическое магнитное поле.
  3. Нагреватель, расположенный внутри катушки, раскаляется от действия вихревых потоков, появляющихся из-за смены вектора магнитного поля.
  4. Вода, циркулирующая внутри элемента, нагревается от него. Затем она поступает в систему отопления.

Достоинства и недостатки индукционного метода нагревания

Индукционные нагреватели наделены такими достоинствами :

  • высокий уровень КПД;
  • не нуждаются в частом техобслуживании;
  • они отнимают мало свободного пространства;
  • вследствие вибраций магнитного поля, внутри них не оседает накипь;
  • приборы бесшумны;
  • они безопасны;
  • благодаря герметичности корпуса не появляются протечки;
  • функционирование нагревателя полностью автоматизировано;
  • агрегат экологически чист, не выделяет копоть, сажу угарный газ и пр.

Главный минус прибора - дороговизна его заводских моделей .

Однако данный недостаток можно нивелировать, если собрать индукционный нагреватель своими руками. Монтируется агрегат из легкодоступных элементов, их цена невелика.

Сборка агрегата

Делается самодельный индукционный нагреватель из сварочного инвертора. Кроме него вам понадобятся некоторые материалы и инструменты.

Какие материалы и инструментарий будут нужны

Чтобы собрать индукторный котел самостоятельно, необходим:

  1. Инвертор от сварочного аппарата. Это устройство значительным образом упростит сборку водонагревателя.

  1. Толстостенная труба из пластика. Она будет играть роль корпуса агрегата.
  2. Проволока из стали-нержавейки. Она станет выполнять функцию нагревательного элемента в магнитном поле.
  3. Сеточка из металла. В ней будут заключены отрезки проволоки из стали-нержавейки.
  4. Водяной насос для циркуляции жидкости.

  1. Проволока из меди для установки индуктора.
  2. Термический регулятор.
  3. Фитинги и шаровые вентили для соединения водонагревателя с отопительной системой.
  4. Пассатижи для работы с проволокой.

Этапы работы

Собирая нагреватель, придерживайтесь точной последовательности работ :

  1. Сначала закрепите на одной стороне трубы из пластика металлическую сеточку. Она не даст вываливаться проволочным отрезкам нагревательного элемента.
  2. В этом же конце корпуса зафиксируйте патрубок для подключения к системе отопления.
  3. Пассатижами нарежьте куски проволоки-нержавейки. Их длина должна быть 1–5 см. Плотно уложите отрезки в пластиковый корпус. В трубе при этом не должно остаться свободного места.
  4. Другой конец трубы закройте металлической сеткой. Затем установите в нем второй патрубок для отопительной сети.

  1. Далее займитесь изготовлением индукционной катушки. Для этого обмотайте трубу проволокой из меди. Инструкция предупреждает, что в намотке должно быть не меньше 80–90 витков.
  2. После этого подсоедините концы медной обмотки к инверторным полюсам аппарата для сварки. Обмотайте изолентой все точки соединений.

  1. Подключите водонагреватель к отопительной сети.
  2. Если обогревательная система еще не была оснащена циркуляционным насосом, то подключите его.

  1. К инвертору подсоедините термический регулятор. Он даст возможность автоматизации функционирования водонагревателя.
  2. В последнюю очередь проверьте работоспособность собранного прибора.

После включения инвертора, индукторная катушка воссоздает электромагнитное поле. Оно генерирует вихревые потоки. Те быстро нагревают проволочные отрезки проволоки. Они передают тепло циркулирующей воде.

Вывод

Индукционный нагреватель металла из сварочного инвертора - эффективный отопительный прибор. При этом у него простая конструкция, потому его несложно собрать самостоятельно.

Ознакомьтесь с видео в этой статье, где есть дополнительные инструкции. Если у вас остались вопросы, то задавайте их в комментариях.

Принцип работы индукционного нагревателя основан на двух физических эффектах: первый заключается в том, что при движении проводящего контура в магнитном поле в проводнике возникает индуцированный ток, а второй основан на выделении тепла металлами, через которые пропускают ток. Первый индукционный нагреватель был реализован в 1900 году, когда был найден способ бесконтактного нагрева проводника – для этого использовали токи высокой частоты, которые индуцировались с помощью переменного магнитного поля.

Индукционный нагрев нашёл применение в различных сферах деятельности человека благодаря:

  • быстрому разогреву;
  • возможности работы в различных по физическим свойствам средах (газ, жидкость, вакуум);
  • отсутствию загрязнений продуктами горения;
  • возможности избирательного нагрева;
  • формам и размерам индуктора – они могут быть любыми;
  • возможности автоматизации процесса;
  • высокому проценту КПД – до 99%;
  • экологичности – нет вредных выбросов в атмосферу;
  • длительному сроку службы.

Сфера применения: отопление помещений

В быту схема индукционного нагревателя была реализована для и плит. Первые получили особенно большую популярность и признание у пользователей за счёт отсутствия нагревательных элементов, которые снижают работоспособность в котлах с другим принципом действия, и разъёмных соединений, что даёт экономию на обслуживании систем индукционного отопления.

Примечание: Схема устройства настолько проста, что может быть создана в домашних условиях, и своими руками можно создать самодельный нагреватель.

На практике используются несколько вариантов, где используется разного типа индукторы:

  • нагреватели с электронным управлением для создания токов нужного вида в катушке;
  • вихревые индукционные нагреватели.

Принцип действия

Последний вариант, наиболее часто используемый в котлах отопления, стал востребован за счёт простоты его реализации. Принцип работы установки индукционного нагрева основан на передаче энергии магнитного поля теплоносителю (воде). Магнитное поле формируется в индукторе. Переменный ток, проходя через катушку, создаёт вихревые потоки, которые трансформируют энергию в тепло.


Вода, подаваемая через нижний патрубок в котёл, прогревается за счёт передачи энергии, и выходит через верхний патрубок, попадая дальше в систему отопления. Для создания давления используют встроенный насос. Постоянно циркулирующая в котле вода не позволяет элементам перегреваться. Кроме того, во время работы происходит вибрация теплоносителя (при низком уровне шума) за счёт чего невозможно отложение накипи на внутренних стенках котла.

Индукционные нагреватели могут быть реализованы различными способами.

Реализация в бытовых условиях

Индукционное отопление ещё не завоевало в достаточной степени рынок из-за высокой стоимости самой системы обогрева. Так, например, для промышленных предприятий подобная система обойдётся в 100 000 рублей, для бытового использования – от 25 000 руб. и выше. Поэтому вполне понятен интерес к схемам, которые позволяют создать самодельный индукционный нагреватель своими руками


На базе трансформатора

Основным элементом системы индукционного отопления с трансформатором станет само устройство, у которого есть первичная и вторичная обмотки. Вихревые потоки будут формироваться в первичной обмотке и создадут электромагнитное индукционное поле. Это поле будет воздействовать на вторичную, которая и есть, по сути, индукционный нагреватель, реализованный физически в виде корпуса котла отопления. Именно вторичная короткозамкнутая обмотка передает энергию теплоносителю.


Главными элементами установки индукционного нагрева являются:

  • сердечник;
  • обмотка;
  • два вида изоляции – тепло- и электроизоляция.

Сердечник – это две ферримагнитные трубки разного диаметра с толщиной стенок не менее 10 мм, вваренные друг в друга. Тороидальная обмотка из медного провода производится по внешней трубке. Необходимо наложить от 85 до 100 витков с равным расстоянием между витками. Переменный ток, изменяясь во времени, создаёт вихревые потоки в замкнутом контуре, которые и нагревают сердечник, следовательно, и теплоноситель, осуществляя индукционный нагрев.

С использованием высокочастотного сварочного инвертора

Индукционный нагреватель может быть создан с использованием сварочного инвертора, где главными компонентами схемы служат генератор переменного тока, индуктор и нагревательный элемент.

Генератор используется для преобразования стандартной частоты в сети электропитания 50 Гц в в ток с более высокой частотой. Этот модулированный ток подаётся на цилиндрическую катушку-индуктор, где в качестве обмотки используется медная проволока.


Катушка создаёт переменное магнитное поле, вектор которого меняется с заданной генератором частотой. Созданные вихревые токи, индуцированные магнитным полем, производят нагрев металлического элемента, который передаёт энергию теплоносителю. Таким образом реализуется ещё одна схема индукционного отопления, выполненная своими руками.

Нагревательный элемент тоже может быть создан своими руками из нарезанной металлической проволоки длиной около 5 мм и отрезка полимерной трубы, в которую помещается металл. При установке вентилей сверху и снизу трубы следует проверить плотность наполнения – не должно оставаться свободного пространства. Согласно схеме поверх трубы накладывается около 100 витков медной проводки, которая и является индуктором, подключаемым к клеммам генератора. Индукционный нагрев медной проволоки происходит за счёт вихревых токов, формируемых переменным магнитным полем.

Примечание: Индукционные нагреватели своими руками могут выполнены по любой схеме, главное помнить о том, что важно осуществить надёжную теплоизоляцию, в противном случае КПД системы отопления значительно упадёт.

Правила безопасности

Для систем отопления, где используется индукционный нагрев, важно соблюдать несколько правил во избежание утечек, потерь КПД, расходования электроэнергии, несчастных случаев.

  1. В системах индукционного отопления необходимо наличие предохранительного клапана для сброса воды и пара на случай выхода из строя насоса.
  2. Манометр и УЗО обязательны для безопасной работы отопительной системы, собранной своими руками.
  3. Наличие заземления и электроизоляции всей системы индукционного отопления предупредит поражение электрическим током.
  4. Во избежание пагубного воздействия электромагнитного поля на организм человека подобные системы лучше выносить за пределы жилой зоны, где следует соблюдать правила монтажа, согласно которым устройство индукционного нагрева должно размещаться на расстоянии 80 см от горизонтальных (пола и потолка) и 30 см от вертикальных поверхностей.
  5. Перед включением системы следует обязательно проверять наличие теплоносителя.
  6. Для предотвращения сбоев в работе электросети рекомендуется подключение котла с индукционным нагревом, выполненного своими руками по предложенным схемам, к отдельной питающей линии, сечение кабеля которой будет составлять не менее 5 мм2. Обычная проводка может не выдержать требуемое энергопотребление.

Прежде чем разговаривать о принципе работы индукционного нагрева следует вообще выяснить, что же это такое. – это процесс технологичной обработки металлов под воздействием высоких температур. На производстве индукционный нагрев используется для сварки, плавки, пайки ТВЧ, закалки, ковки, деформации и термообработки. Современные предприятия по обработке металла используют индукционный нагрев, потому что он смог привлечь своими достоинствами,

среди которых хочется отметить высокую скорость работу, хорошие результаты, энергетическую эффективность оборудования, а также автоматизированный контроль над рабочим процессом.
Принципы индукционного нагрева для производственных процессов применяются примерно с 20-х годов. В период Второй мировой войны ученые старались как можно быстрее развивать новейшие технологии, чтобы использоваться их в сложившейся ситуации. Как раз во время войны возникла острая необходимость в изобретении надежного и быстрого процесса, дающего возможность получать более прочные металлические изделия.
В настоящее время ученые нацелены на поиск технологий, позволяющих производить все необходимые технологичные процессы со сбережением природных ресурсов и времени. Конечно же, повышенный контроль качества также оказал немаловажное влияние на создание оборудования, способного производить быструю, экономичную и качественную работу. На сегодняшний день индукционный нагрев активно применяется производителями на металлургических предприятиях.

Как работает индукционный нагрев

Переменный ток, подающийся от генератора электрической энергии, оказывает воздействие на первичную обмотку трансформатора, создавая мощное электромагнитное поле. Применяя на практике закон Фарадея о воздействии на вторичную обмотку, размещенную внутри образовавшегося магнитного поля, можно получить электрическую энергию.
Если рассматривать стандартную конструкцию индукционного нагревателя , то будет видно, что переменный ток проходит через индуктор (который, как правило, выполнен в виде медной катушки) и образует тепловую энергию в металлическом изделии, размещенном в индукторе. В данном случае индуктор – это первичная обмотка трансформатора, а размещенная в нем деталь – вторичная.
Электромагнитное поле, проходящее через металлическое изделие, создает в нем так называемые токи Фуко. Токи Фуко имеют направление противоположное электрическому сопротивлению металла. Тепловая энергия образуется непосредственно в металле без достижения прямого контакта между металлом и индуктором. Данный эффект принято называть «Эффектом Джоуля», так как он основан на первом законе ученого.

Индукционный нагрев - достоинства

Выше мы уже говорили о том, что масштабное применение индукционного нагрева началось не просто так, и всему причиной стали достоинства, которыми обладает индукционное оборудование. Ниже мы более подробно рассмотрим эти преимущества.
Какими же преимуществами обладает оборудование индукционного нагрева, если сравнивать его с альтернативными способами обработки металла?

  1. Высокая производительность. Индукционный нагрев позволяет повысить производительность предприятия благодаря быстрому запуску установок и нагреву изделий за короткий промежуток времени. Нагрев происходит почти мгновенно после запуска установки. Нет необходимости предварительно нагревать или охлаждать оборудование.
  2. Прочность конструкции. Тепловая энергия, как уже было рассмотрено выше, образуется непосредственно в металле, что позволяет сохранить целостность изделия. При использовании индукционного нагревателя в производстве получается минимальное количество брака. Чтобы получить максимальный эффект от обработки металла можно размещать металл в специальной вакуумной среде, защищая его тем самым от окисления.
  3. Высокая энергетическая эффективность. Индукционный нагреватель позволяет экономить электрическую энергию, используя лишь ее малое количество для образования мощного электромагнитного поля. Все ожидания после запуска установки сведены к минимуму, что так же экономит производственные ресурсы, и позволяет получить изделие с более низкой себестоимостью.
  4. Автоматизированный рабочий процесс. Благодаря программному обеспечению, установленному в индукционную установку, весь рабочий процесс может контролироваться автоматически, что дает возможность получения более точных результатов обработки.
  5. Чистая экология. Индукционный нагрев безопасен с экологической точки зрения. Во время работы индукционной установки в воздух не выделяются никакие вредные вещества, а так как открытого пламени нет, то отсутствует и задымление. Индукционный нагреватель имеет высокий уровень пожаробезопасности.

Индукционный нагрев – это отличный современный способ, позволяющий производить качественную и быструю обработку металла высокими температурами.
Задать любой интересующий вопрос, касающийся индукционного оборудования, вы можете на нашем форуме или, позвонив одному из специалистов компании, все телефоны указаны в разделе «Контакты».

Индукционный нагрев March 14th, 2015

В индукционных печах и устройствах тепло в электропроводном нагреваемом теле выделяется токами, индуктированными в нем переменным электромагнитным полем. Таким образом, здесь осуществляется прямой нагрев.
Индукционный нагрев металлов основан на двух физических законах: законе электромагнитной индукции Фарадея-Максвелла и законе Джоуля-Ленца. Металлические тела (заготовки, детали и др.) помещают в переменное магнитное поле, которое возбуждает в них вихревое электрическое поле. ЭДС индукции определяется скоростью изменения магнитного потока. Под действием ЭДС индукции в телах протекают вихревые (замкнутые внутри тел) токи, выделяющие теплоту по закону Джоуля-Ленца. Эта ЭДС создает в металле переменный ток, тепловая энергия, выделяемая данными токами, является причиной нагрева металла. Индукционный нагрев является прямым и бесконтактным. Он позволяет достигать температуры, достаточной для плавления самых тугоплавких металлов и сплавов.

Под катом видео с девайсом от 12 вотльт

Индукционный нагрев и закалка металловИнтенсивный индукционный нагрев возможен лишь в электромагнитных полях высокой напряженности и частоты, которые создают специальными устройствами — индукторами. Индукторы питают от сети 50 Гц (установки промышленной частоты) или от индивидуальных источников питания — генераторов и преобразователей средней и высокой частоты.
Простейший индуктор устройств косвенного индукционного нагрева низкой частоты — изолированный проводник (вытянутый или свернутый в спираль), помещенный внутрь металлической трубы или наложенный на ее поверхность. При протекании по проводнику-индуктору тока в трубе наводятся греющие ее вихревые токи. Теплота от трубы (это может быть также тигель, емкость) передается нагреваемой среде (воде, протекающей по трубе, воздуху и т. д.).

Наиболее широко применяется прямой индукционный нагрев металлов на средних и высоких частотах. Для этого используют индукторы специального исполнения. Индуктор испускает электромагнитную волну, которая падает на нагреваемое тело и затухает в нем. Энергия поглощенной волны преобразуется в теле в теплоту. Для нагрева плоских тел применяют плоские индукторы, цилиндрических заготовок — цилиндрические (соленоидные) индукторы. В общем случае они могут иметь сложную форму, обусловленную необходимостью концентрации электромагнитной энергии в нужном направлении.

Особенностью индукционного ввода энергии является возможность регулирования пространственного расположения зоны протекания вихревых токов. Во-первых, вихревые токи протекают в пределах площади, охватываемой индуктором. Нагревается только та часть тела, которая находится в магнитной связи с индуктором независимо от общих размеров тела. Во-вторых, глубина зоны циркуляции вихревых токов и, следовательно, зоны выделения энергии зависит, кроме других факторов, от частоты тока индуктора (увеличивается при низких частотах и уменьшается с повышением частоты). Эффективность передачи энергии от индуктора к нагреваемому току зависит от величины зазора между ними и повышается при его уменьшении.

Индукционный нагрев применяют для поверхностной закалки стальных изделий, сквозного нагрева под пластическую деформацию (ковку, штамповку, прессование и т. д.), плавления металлов, термической обработки (отжиг, отпуск, нормализация, закалка), сварки, наплавки, пайки металлов.

Косвенный индукционный нагрев применяют для обогрева технологического оборудования (трубопроводы, емкости и т. д.), нагрева жидких сред, сушки покрытий, материалов (например, древесины). Важнейший параметр установок индукционного нагрева — частота. Для каждого процесса (поверхностная закалка, сквозной нагрев) существует оптимальный диапазон частот, обеспечивающий наилучшие технологические и экономические показатели. Для индукционного нагрева используют частоты от 50Гц до 5Мгц.

Преимущества индукционного нагрева

1) Передача электрической энергии непосредственно в нагреваемое тело позволяет осуществить прямой нагрев проводниковых материалов. При этом повышается скорость нагрева по сравнению с установками косвенного действия, в которых изделие нагревается только с поверхности.

2) Передача электрической энергии непосредственно в нагреваемое тело не требует контактных устройств. Это удобно в условиях автоматизированного поточного производства, при использовании вакуумных и защитных средств.

3) Благодаря явлению поверхностного эффекта максимальная мощность, выделяется в поверхностном слое нагреваемого изделия. Поэтому индукционный нагрев при закалке обеспечивает быстрый нагрев поверхностного слоя изделия. Это позволяет получить высокую твердость поверхности детали при относительно вязкой середине. Процесс поверхностной индукционной закалки быстрее и экономичнее других методов поверхностного упрочнения изделия.

4) Индукционный нагрев в большинстве случаев позволяет повысить производительность и улучшить условия труда.

Вот еще один необычный эффект: А я вам еще напомню про , а так же . Мы еще обсуждали и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -