Где родился альберт эйнштейн. Три важные работы Эйнштейна

Физик-теоретик, один из основоположников современной физики. Известен прежде всего как автор теории относительности. Эйнштейн внес также значительный вклад в создание квантовой механики, развитие статистической физики и космологии. Лауреат Нобелевской премии по физике 1921 («за объяснение фотоэлектрического эффекта»).


Родился 14 марта 1879 в Ульме (Вюртемберг, Германия) в семье мелкого коммерсанта. Предки Эйнштейна поселились в Швабии около 300 лет назад, и ученый до конца жизни сохранил мягкое южногерманское произношение, даже когда говорил по-английски. Учился в католической народной школе в Ульме, затем, после переезда семьи в Мюнхен, в гимназии. Школьным урокам, однако, предпочитал самостоятельные занятия. В особенности привлекали его геометрия и популярные книги по естествознанию, и вскоре в точных науках он далеко опередил своих сверстников. К 16 годам Эйнштейн овладел основами математики, включая дифференциальное и интегральное исчисления. В 1895, не окончив гимназию, отправился в Цюрих, где находилось Федеральное высшее политехническое училище, пользовавшееся высокой репутацией. Не выдержав экзаменов по современным языкам и истории, поступил в старший класс кантональной школы в Аарау. По окончании школы, в 1896, Эйнштейн стал студентом Цюрихского политехникума. Здесь одним из его учителей был превосходный математик Герман Минковский (впоследствии именно он придал специальной теории относительности законченную математическую форму), так что Энштейн мог бы получить солидную математическую подготовку, однако большую часть времени он работал в физической лаборатории, а в остальное время читал классические труды Г.Кирхгофа, Дж.Максвелла, Г.Гельмгольца и др.

После выпускного экзамена в 1900 Эйнштейн в течение двух лет не имел постоянного места работы. Недолгое время он преподавал физику в Шаффгаузене, давал частные уроки, а затем по рекомендации друзей получил место технического эксперта в Швейцарском патентном бюро в Берне. В этом «светском монастыре» Эйнштейн проработал 7 лет (1902–1907) и считал это время самым счастливым и плодотворным периодом в своей жизни.

В 1905 в журнале «Анналы физики» («Annalen der Physik») вышли работы Эйнштейна, принесшие ему мировую славу. С этого исторического момента пространство и время навсегда перестали быть тем, чем были прежде (специальная теория относительности), квант и атом обрели реальность (фотоэффект и броуновское движение), масса стала одной из форм энергии (E = mc2).

Хронологически первыми были исследования Эйнштейна по молекулярной физике (начало им было положено в 1902), посвященные проблеме статистического описания движения атомов и молекул и взаимосвязи движения и теплоты. В этих работах Эйнштейн пришел к выводам, существенно расширяющим результаты, которые были получены австрийским физиком Л.Больцманом и американским физиком Дж.Гиббсом. В центре внимания Эйнштейна в его исследованиях по теории теплоты находилось броуновское движение. В статье 1905 О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты (ber die von molekularkinetischen Theorie der Wrme geforderte Bewegung von in ruhenden Flssigkeiten suspendierten Teilchen) он с помощью статистических методов показал, что между скоростью движения взвешенных частиц, их размерами и коэффициентами вязкости жидкостей существует количественное соотношение, которое можно проверить экспериментально. Эйнштейн придал законченную математическую форму статистическому объяснению этого явления, представленному ранее польским физиком М.Смолуховским. Закон броуновского движения Эйнштейна был полностью подтвержден в 1908 опытами французского физика Ж.Перрена. Работы по молекулярной физике доказывали правильность представлений о том, что теплота есть форма энергии неупорядоченного движения молекул. Одновременно они подтверждали атомистическую гипотезу, а предложенный Эйнштейном метод определения размеров молекул и его формула для броуновского движения позволяли определить число молекул.

Если работы по теории броуновского движения продолжили и логически завершили предшествовавшие работы в области молекулярной физики, то работы по теории света, тоже базировавшиеся на сделанном ранее открытии, носили поистине революционный характер. В своем учении Эйнштейн опирался на гипотезу, выдвинутую в 1900 М.Планком, о квантовании энергии материального осциллятора. Но Эйнштейн пошел дальше и постулировал квантование самого светового излучения, рассматривая последнее как поток квантов света, или фотонов (фотонная теория света). Это позволяло простым способом объяснить фотоэлектрический эффект – выбивание электронов из металла световыми лучами, явление, обнаруженное в 1886 Г.Герцем и не укладывавшееся в рамки волновой теории света. Девять лет спустя предложенная Эйнштейном интерпретация была подтверждена исследованиями американского физика Милликена, а в 1923 реальность фотонов стала очевидной с открытием эффекта Комптона (рассеяние рентгеновских лучей на электронах, слабо связанных с атомами). В чисто научном отношении гипотеза световых квантов составила целую эпоху. Без нее не могли бы появиться знаменитая модель атома Н.Бора (1913) и гениальная гипотеза «волн материи» Луи де Бройля (начало 1920-х годов).

В том же 1905 была опубликована работа Эйнштейна К электродинамике движущихся тел (Zur Elektrodynamik der bewegter Krper). В ней излагалась специальная теория относительности, которая обобщала ньютоновские законы движения и переходила в них при малых скоростях движения (v

Исходя из специальной теории относительности, Эйнштейн в том же 1905 открыл закон взаимосвязи массы и энергии. Его математическим выражением является знаменитая формула E = mc2. Из нее следует, что любой перенос энергии связан с переносом массы. Эта формула трактуется также как выражение, описывающее «превращение» массы в энергию. Именно на этом представлении основано объяснение т.н. «дефекта массы». В механических, тепловых и электрических процессах он слишком мал и потому остается незамеченным. На микроуровне он проявляется в том, что сумма масс составных частей атомного ядра может оказаться больше массы ядра в целом. Недостаток массы превращается в энергию связи, необходимую для удержания составных частей. Атомная энергия есть не что иное, как превратившаяся в энергию масса. Принцип эквивалентности массы и энергии позволил упростить законы сохранения. Оба закона, сохранения массы и сохранения энергии, до этого существовавшие раздельно, превратились в один общий закон: для замкнутой материальной системы сумма массы и энергии остается неизменной при любых процессах. Закон Эйнштейна лежит в основе всей ядерной физики.

В 1907 Эйнштейн распространил идеи квантовой теории на физические процессы, не связанные с излучением. Рассмотрев тепловые колебания атомов в твердом теле и используя идеи квантовой теории, он объяснил уменьшение теплоемкости твердых тел при понижении температуры, разработав первую квантовую теорию теплоемкости. Эта работа помогла В.Нернсту сформулировать третье начало термодинамики.

В конце 1909 Эйнштейн получил место экстраординарного профессора теоретической физики Цюрихского университета. Здесь он преподавал только три семестра, затем последовало почетное приглашение на кафедру теоретической физики Немецкого университета в Праге, где долгие годы работал Э.Мах. Пражский период отмечен новыми научными достижениями ученого. Исходя из своего принципа относительности, он в 1911 в статье О влиянии силы тяжести на распространение света (ber den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes) заложил основы релятивистской теории тяготения, высказав мысль, что световые лучи, испускаемые звездами и проходящие вблизи Солнца, должны изгибаться у его поверхности. Таким образом, предполагалось, что свет обладает инерцией и в поле тяготения Солнца должен испытывать сильное гравитационное воздействие. Эйнштейн предложил проверить это теоретическое соображение с помощью астрономических наблюдений и измерений во время ближайшего солнечного затмения. Провести такую проверку удалось только в 1919. Это сделала английская экспедиция под руководством астрофизика Эддингтона. Полученные ею результаты полностью подтвердили выводы Эйнштейна.

Летом 1912 Эйнштейн возвратился в Цюрих, где в Высшей технической школе была создана кафедра математической физики. Здесь он занялся разработкой математического аппарата, необходимого для дальнейшего развития теории относительности. В этом ему помогал его соученик Марсель Гросман. Плодом их совместных усилий стал труд Проект обобщенной теории относительности и теории тяготения (Entwurf einer verallgemeinerten Relativitatstheorie und Theorie der Gravitation, 1913). Эта работа стала второй, после пражской, вехой на пути к общей теории относительности и учению о гравитации, которые были в основном закончены в Берлине в 1915.

В Берлин Эйнштейн прибыл в апреле 1914, будучи уже членом Академии наук (1913), и приступил к работе в созданном Гумбольдтом университете – крупнейшем высшем учебном заведении Германии. Здесь он провел 19 лет – читал лекции, вел семинары, регулярно участвовал в работе коллоквиума, который во время учебного года раз в неделю проводился в Физическом институте.

В 1915 Эйнштейн завершил создание общей теории относительности. Если построенная в 1905 специальная теория относительности, справедливая для всех физических явлений, за исключением тяготения, рассматривает системы, движущиеся по отношению друг к другу прямолинейно и равномерно, то общая имеет дело с произвольно движущимися системами. Ее уравнения справедливы независимо от характера движения системы отсчета, а также для ускоренного и вращательного движений. По своему содержанию, однако, она являтся в основном учением о тяготении. Она примыкает к гауссовой теории кривизны поверхностей и имеет целью геометризацию гравитационного поля и действующих в нем сил. Эйнштейн утверждал, что пространство отнюдь не однородно и что его геометрическая структура зависит от распределения масс, от вещества и поля. Сущность тяготения объяснялась изменением геометрических свойств, искривлением четырехмерного пространства-времени вокруг тел, которые образуют поле. По аналогии с искривленными поверхностями в неевклидовой геометрии используется представление об «искривленном пространстве». Здесь нет прямых линий, как в «плоском» пространстве Евклида; есть лишь «наиболее прямые» линии – геодезические, представляющие собой кратчайшее расстояние между точками. Кривизной пространства определяется геометрическая форма траекторий тел, движущихся в поле тяготения. Орбиты планет определяются искривлением пространства, задаваемым массой Солнца, и характеризуют это искривление. Закон тяготения становится частным случаем закона инерции.

Для проверки общей теории относительности, которая основывалась на очень небольшом числе эмпирических фактов и представляла собой продукт чисто умозрительных рассуждений, Эйнштейн указал на три возможных эффекта. Первый состоит в дополнительном вращении или смещении перигелия Меркурия. Речь идет о давно известном явлении, в свое время открытом французским астрономом Леверье. Оно заключается в том, что ближайшая к Солнцу точка эллиптической орбиты Меркурия смещается за 1 тысячу лет на 43 дуговые секунды. Эта цифра превышает значение, следующее из ньютоновского закона тяготения. Теория Эйнштейна объясняет его как прямое следствие изменения структуры пространства, вызванное Солнцем. Второй эффект состоит в искривлении световых лучей в поле тяготения Солнца. Третий эффект – релятивистское «красное смещение». Оно заключается в том, что спектральные линии света, испускаемого очень плотными звездами, смещены в «красную» сторону, т.е. в сторону больших длин волн, по сравнению с их положением в спектрах тех же молекул, находящихся в земных условиях. Смещение объясняется тем, что сильное гравитационное воздействие уменьшает частоту колебаний световых лучей. Красное смещение было проверено на спутнике Сириуса – звезды с очень большой плотностью, а затем и на других звездах – белых карликах. Впоследствии оно было обнаружено и в поле земного тяготения при измерениях частоты g -квантов с помощью эффекта Мёссбауэра.

Всего через год после опубликования работы по общей теории относительности Эйнштейн представил еще одну работу, имеющую революционное значение. Поскольку не существует пространства и времени без материи, т.е. без вещества и поля, отсюда с необходимостью следует, что Вселенная должна быть пространственно конечной (идея замкнутой Вселенной). Эта гипотеза находилась в резком противоречии со всеми привычными представлениями и привела к появлению целого ряда релятивистских моделей мира. И хотя статическая модель Эйнштейна оказалась в дальнейшем несостоятельной, основная ее идея – замкнутости – сохранила силу. Одним из первых, кто творчески продолжил космологические идеи Эйнштейна, был советский математик А.Фридман. Исходя из эйнштейновских уравнений, он в 1922 пришел к динамической модели – к гипотезе замкнутого мирового пространства, радиус кривизны которого возрастает во времени (идея расширяющейся Вселенной).

В 1916–1917 вышли работы Эйнштейна, посвященные квантовой теории излучения. В них он рассмотрел вероятности переходов между стационарными состояниями атома (теория Н.Бора) и выдвинул идею индуцированного излучения. Эта концепция стала теоретической основой современной лазерной техники.

Середина 1920-х годов ознаменовалась в физике созданием квантовой механики. Несмотря на то что идеи Эйнштейна во многом способствовали ее становлению, вскоре обнаружились значительные расхождения между ним и ведущими представителями квантовой механики. Эйнштейн не мог примириться с тем, что закономерности микромира носят лишь вероятностный характер (известен его упрек, адресованный Борну, в том, что тот верит «в Бога, играющего в кости»). Эйнштейн не считал статистическую квантовую механику принципиально новым учением, а рассматривал ее как временное средство, к которому приходится прибегать, пока не удается получить полное описание реальности. На Сольвеевских конгрессах 1927 и 1930 разгорелись жаркие, полные драматизма дискуссии между Эйнштейном и Бором по поводу интерпретации квантовой механики. Эйнштейн не смог убедить ни Бора, ни более молодых физиков – Гейзенберга и Паули. С тех пор он следил за работами «копенгагенской школы» с чувством глубокого недоверия. Статистические методы квантовой механики казались ему «невыносимыми» с теоретико-познавательной и неудовлетворительными с эстетической точки зрения. Начиная со второй половины 1920-х годов Эйнштейн уделял много времени и сил разработке единой теории поля. Такая теория должна была объединить электромагнитное и гравитационное поля на общей математической основе. Однако те несколько работ, которые он опубликовал по этому вопросу, не удовлетворили его самого.

Между тем политическая ситуация в Германии становилась все более напряженной. К началу 1920 относятся первые организованные выходки против ученого. В феврале реакционно настроенные студенты вынудили Эйнштейна прервать лекцию в Берлинском университете и покинуть аудиторию. Вскоре началась планомерная кампания против создателя теории относительности. Ею руководила группа антисемитов, которая выступала под вывеской «Рабочее объединение немецких естествоиспытателей для сохранения чистой науки»; одним из ее основателей был гейдельбергский физик Ф.Ленард. В августе 1920 «Рабочее объединение» организовало в зале Берлинской филармонии демонстрацию против теории относительности. Вскоре в одной из газет появился призыв к убийству ученого, а спустя несколько дней в немецкой прессе были напечатаны сообщения, что Эйнштейн, оскорбленный травлей, намеревается покинуть Германию. Ученому была предложена кафедра в Лейдене, но он отказался, решив, что отъезд был бы предательством по отношению к тем немецким коллегам, которые его самоотверженно защищали, прежде всего к Лауэ, Нернсту и Рубенсу. Однако Эйнштейн выразил готовность принять звание экстраординарного почетного профессора в нидерландском Королевском университете, и голландская «выездная» профессура оставалась за ним вплоть до 1933.

Антисемитская травля в Берлине оказала существенное влияние на отношение Эйнштейна к сионизму. «Пока я жил в Швейцарии, я никогда не сознавал своего еврейства, и в этой стране не было ничего, что влияло бы на мои еврейские чувства и оживляло бы их. Но все изменилось, как только я переехал в Берлин. Там я увидел бедствия многих молодых евреев. Я видел, как их антисемитское окружение делало невозможным для них добиться систематического образования... Тогда я понял, что лишь совместное дело, которое будет дорого всем евреям в мире, может привести к возрождению народа». Таким делом ученый полагал создание независимого еврейского государства. Вначале он счел необходимым поддержать усилия по созданию Еврейского университета в Иерусалиме, что побудило его предпринять совместную поездку по США с главой сионистского движения, химиком Х.Вейцманом. Поездка должна была содействовать пропаганде сионистской идеи и сбору средств для университета. В США Эйнштейн прочел ряд научных докладов, в том числе в Принстонском университете.

В марте 1922 Эйнштейн отправился с лекциями в Париж, а осенью снова предпринял большую зарубежную поездку – в Китай и Японию. На обратном пути он впервые посетил Палестину. В Иерусалимском университете Эйнштейн рассказывал о своих исследованиях по теории относительности, беседовал с первыми еврейскими переселенцами. После 1925 Эйнштейн не предпринимал дальних путешествий и жил в Берлине, совершая лишь поездки в Лейден для чтения лекций, а летом в Швейцарию, на побережье Северного или Балтийского моря. Весной 1929 по случаю пятидесятилетия ученого магистрат Берлина подарил ему участок лесистой местности на берегу Темплинского озера. В просторном, удобном доме Эйнштейн проводил много времени. Отсюда он уплывал на парусном ялике, часами курсируя по озерам.

Начиная с 1930 Эйнштейн проводил зимние месяцы в Калифорнии. В Пасаденском технологическом институте ученый читал лекции, в которых рассказывал о результатах своих исследований. В начале 1933 Эйнштейн находился в Пасадене, и после прихода Гитлера к власти никогда более не ступал на немецкую землю. В марте 1933 он заявил о своем выходе из Прусской Академии наук и отказался от прусского гражданства.

С октября 1933 Эйнштейн приступил к работе в Принстонском университете, а вскоре получил американское гражданство, одновременно оставаясь гражданином Швейцарии. Ученый продолжал свои работы по теории относительности; большое внимание уделял попыткам создания единой теории поля.

Находясь в США, ученый старался любыми доступными ему средствами оказывать моральную и материальную поддержку немецким антифашистам. Его очень беспокоило развитие политической ситуации в Германии. Эйнштейн опасался, что после открытия деления ядра Ганом и Штрассманом у Гитлера появится атомное оружие. Тревожась за судьбу мира, Эйнштейн направил президенту США Ф.Рузвельту свое знаменитое письмо, которое побудило последнего приступить к работам по созданию атомного оружия. После окончания Второй мировой войны Эйнштейн включился в борьбу за всеобщее разоружение. На торжественном заседании сессии ООН в Нью-Йорке в 1947 он заявил об ответственности ученых за судьбы мира, а в 1948 выступил с обращением, в котором призывал к запрещению оружия массового поражения. Мирное сосуществование, запрещение ядерного оружия, борьба против пропаганды войны – эти вопросы занимали Эйнштейна в последние годы его жизни не меньше, чем физика.

Умер Эйнштейн в Принстоне (США) 18 апреля 1955. Его прах был развеян друзьями в месте, которое должно навсегда остаться неизвестным.

Имя этого ученого знакомо всем. И если его достижения являются неотъемлемой частью школьной программы, то биография Альберта Эйнштейна остается за ее рамками. Это величайший из ученых. Его работы определили развитие современной физики. Кроме того, очень интересной личностью был Альберт Эйнштейн. Краткая биография познакомит вас с достижениями, основными вехами жизненного пути и некоторыми интересными фактами об этом ученом.

Детство

Годы жизни гения - 1879-1955. Биография Альберта Эйнштейна начинается 14 марта 1879 года. Именно тогда он родился в городе Его отцом был небогатый еврейский торговец. Он содержал небольшую мастерскую электротоваров.

Известно, что до трех лет Альберт не говорил, однако проявлял необычайное любопытство уже в ранние годы. Будущему ученому было интересно знать, как устроен мир. Кроме того, с юных лет он проявил способности к математике, мог понимать отвлеченные идеи. В возрасте 12 лет сам, по книгам, изучил Евклидову геометрию Альберт Эйнштейн.

Биография для детей, как мы считаем, непременно должна включать один любопытный факт об Альберте. Известно, что знаменитый ученый в детстве не был вундеркиндом. Более того, окружающие сомневались в его полноценности. Мать Эйнштейна подозревала наличие врожденного уродства у ребенка (дело в том, что у него была большая голова). Будущий гений в школе зарекомендовал себя медлительным, ленивым, замкнутым. Все смеялись над ним. Учителя считали, что он практически ни на что не способен. Школьникам будет очень полезно узнать, каким нелегким было детство такого великого ученого, как Альберт Эйнштейн. Краткая биография для детей должна быть не просто перечислением фактов, но и учить чему-то. В данном случае - толерантности, вере в свои силы. Если ваш ребенок отчаялся и считает себя ни на что не способным, просто расскажите ему о детстве Эйнштейна. Он не сдался, сохранил веру в свои силы, о чем свидетельствует дальнейшая биография Альберта Эйнштейна. Ученый доказал, что способен на многое.

Переезд в Италию

Молодого ученого отталкивали скука и регламентация в мюнхенской школе. В 1894 году из-за деловых неудач семья была вынуждена покинуть Германию. Эйнштейны отправились в Италию, в Милан. Альберт, которому было в это время 15 лет, воспользовался открывшейся возможностью бросить школу. Он провел еще год со своими родителями в Милане. Однако вскоре стало ясно, что Альберт должен определиться в жизни. После окончания средней школы в Швейцарии (в Аррау) биография Альберта Эйнштейна продолжается учебой в Цюрихском политехникуме.

Обучение в Цюрихском политехникуме

Методы обучения в политехникуме ему пришлись не по нраву. Юноша нередко пропускал лекции, посвящая свободное время изучению физики, а также игре на скрипке, которая была любимым инструментом Эйнштейна всю жизнь. Альберту в 1900 году удалось сдать экзамены (он подготовился по записям сокурсника). Так Эйнштейн получил степень. Известно, что профессора были весьма невысокого мнения о выпускнике и не рекомендовали ему в дальнейшем научную карьеру.

Работа в патентном бюро

После получения диплома будущий ученый стал работать в патентном бюро экспертом. Так как оценка технических характеристик занимала у молодого специалиста обычно около 10 минут, у него оставалось много свободного времени. Благодаря этому начал разрабатывать собственные теории Альберт Эйнштейн. Краткая биография и его открытия вскоре стали известны многим.

Три важные работы Эйнштейна

1905 год стал знаменательным в развитии физики. Именно тогда Эйнштейн опубликовал важные работы, которые сыграли выдающуюся роль в истории этой науки в XX веке. Первая из статей была посвящена Ученый сделал важные предсказания по поводу движения частиц, взвешенных в жидкости. Это движение, как отметил он, происходит из-за столкновения молекул. Позднее предсказания ученого подтвердились и опытным путем.

Альберт Эйнштейн, краткая биография и открытия которого только начинаются, вскоре опубликовал вторую работу, посвященную на сей раз фотоэффекту. Альберт высказал гипотезу о природе света, которая была не иначе как революционной. Ученый предположил, что при определенных обстоятельствах можно рассматривать свет как поток фотонов - частиц, энергия которых соотносится с частотой световой волны. Почти все физики тут же согласились с идеей Эйнштейна. Однако для того, чтобы теория фотонов получила признание в квантовой механике, потребовалось 20 лет напряженных усилий теоретиков и экспериментаторов. Но самой революционной работой Эйнштейна стала третья, "К электродинамике движущихся тел". В ней необычайно ясно изложил идеи ЧТО (частной теории относительности) Альберт Эйнштейн. Краткая биография ученого продолжается небольшим рассказом об этой теории.

Частная теория относительности

Она разрушила представления о времени и пространстве, существовавшие в науке еще со времен Ньютона. А. Пуанкаре и Г. А. Лоренц создали ряд положений новой теории, однако лишь Эйнштейн смог ясно сформулировать на физическом языке ее постулаты. Это касается, в первую очередь, а также наличия предела скорости распространения сигнала. И сегодня можно встретить высказывания, что якобы еще до Эйнштейна была создана теория относительности. Однако это неверно, так как в ЧТО формулы (многие из которых действительно вывели Пуанкаре и Лоренц) важны не столько, сколько правильные основания с точки зрения физики. Ведь именно из них вытекают данные формулы. Лишь Альберт Эйнштейн смог раскрыть теорию относительности с точки зрения физического содержания.

Взгляд Эйнштейна на структуру теорий

Общая теория относительности (ОТО)

Альберт Эйнштейн с 1907 по 1915 год работал над новой теорией тяготения, базировавшейся на принципах теории относительности. Извилистым и трудным был путь, приведший Альберта к успеху. Главная идея ОТО, построенной им, заключается в наличии неразрывной связи между геометрией пространства-времени и полем тяготения. Пространство-время при наличии тяготеющих масс, согласно Эйнштейну, становится неевклидовым. У него появляется кривизна, которая тем больше, чем интенсивнее в этой области пространства поле тяготения. Альберт Эйнштейн представил окончательные уравнения ОТО в декабре 1915 года, во время заседания в Берлине Академии наук. Эта теория - вершина творчества Альберта. Она является, по общему мнению, одной из самых красивых в физике.

Затмение 1919 года и его роль в судьбе Эйнштейна

Понимание ОТО, однако, пришло не сразу. Эта теория первые три года интересовала немногих специалистов. Ее поняли лишь некоторые ученые. Однако в 1919 году ситуация резко изменилась. Тогда прямыми наблюдениями удалось проверить одно из парадоксальных предсказаний данной теории - что луч света от далекой звезды искривляется полем тяготения Солнца. Проверку возможно осуществить лишь при полном солнечном затмении. В 1919 году явление можно было наблюдать в тех частях земного шара, где была хорошей погодой. Благодаря этому стало возможным провести точное фотографирование положения звезд в момент затмения. Снаряженная английским астрофизиком Артуром Эддингтоном экспедиция смогла получить информацию, подтвердившую предположение Эйнштейна. Альберт буквально в один день стал знаменитостью мирового масштаба. Слава, обрушившаяся на него, была огромной. На долгое время теория относительности стала предметом дискуссий. Статьями о ней были переполнены газеты всех стран мира. Было издано множество популярных книг, где авторы объясняли обывателям ее суть.

Признание научных кругов, споры Эйнштейна с Бором

Наконец пришло признание и в научных кругах. Эйнштейн в 1921 году получил Нобелевскую премию (хотя и за теорию квантов, а не за ОТО). Его избрали почетным членом целого ряда академий. Мнение Альберта стало одним из наиболее авторитетных во всем мире. Эйнштейн в двадцатые годы много ездил по всему миру. Он участвовал в проводимых международных конференциях по всему миру. Роль этого ученого была особенно важна в дискуссиях, которые развернулись в конце 1920-х годов по вопросам квантовой механики.

Споры и беседы Эйнштейна с Бором по этим проблемам стали знаменитыми. Эйнштейн никак не мог согласиться с тем, что в ряде случаев оперирует лишь вероятностями, а не точными значениями величин. Его не устраивала принципиальная недетерминированность различных законов микромира. Любимым выражением Эйнштейна стала фраза: "Бог не играет в кости!". Однако Альберт в спорах с Бором, по всей видимости, был не прав. Как вы видите, и гении ошибаются, в том числе и Альберт Эйнштейн. Биография и интересные факты о нем дополняются трагедией, которую пережил этот ученый из-за того, что всем свойственно ошибаться.

Трагедия в жизни Эйнштейна

Создателя ОТО в последние 30 лет жизни, к сожалению, была малопродуктивной. Это было связано с тем, что ученый поставил перед собой задачу грандиозной величины. Альберт намеревался создать единую теорию всевозможных взаимодействий. Такая теория, как сейчас ясно, возможна лишь в рамках квантовой механики. В довоенное время, кроме того, было известно очень немного о существовании других взаимодействий, кроме гравитационного и электромагнитного. Титанические усилия Альберта Эйнштейна поэтому завершились ничем. Возможно, это стало одной из самых больших трагедий в его жизни.

Стремление к красоте

Трудно переоценить значение открытий Альберта Эйнштейна в науке. Сегодня практически каждая ветвь современной физики основывается на фундаментальных понятиях теории относительности или квантовой механики. Пожалуй, не менее важна и уверенность, которую вселил Эйнштейн в ученых своими трудами. Он показал, что природа познаваема, показал красоту ее законов. Именно стремление к красоте было смыслом жизни такого великого ученого, как Альберт Эйнштейн. Биография его уже подходит к концу. Жаль, что в рамках одной статьи нельзя охватить всего наследия Альберта. Но о том, как он делал свои открытия, непременно стоит рассказать.

Как Эйнштейн создавал теории

У Эйнштейна был своеобразный способ мышления. Ученый выделял идеи, казавшиеся ему дисгармоничными или неизящными. При этом он исходил главным образом из эстетических критериев. Затем ученый провозглашал общий принцип, восстанавливающий гармонию. И далее он делал прогнозы о том, как поведут себя те или иные физические объекты. Ошеломляющие результаты давал этот подход. Альберт Эйнштейн тренировал умение увидеть проблему с неожиданного ракурса, подняться над ней и найти необычный выход. Когда Эйнштейн попадал в тупик, он играл на скрипке, и внезапно решение всплывало в его голове.

Переезд в США, последние годы жизни

В 1933 году нацисты пришли к власти в Германии. Они сжигали все Семье Альберта пришлось эмигрировать в США. Здесь Эйнштейн работал в Принстоне, в Институте фундаментальных исследований. В 1940 году ученый отказался от немецкого гражданства и официально стал гражданином США. Последние годы он провел в Принстоне, трудился над своей грандиозной теорией. Минуты отдыха он посвящал катанию по озеру на лодке и игре на скрипке. 18 апреля 1955 г. умер Альберт Эйнштейн.

Биография и открытия Альберта до сих пор изучаются многими учеными. Некоторые исследования весьма любопытны. В частности, мозг Альберта после смерти изучали на предмет гениальности, однако не обнаружили ничего исключительного. Это говорит о том, что каждый из нас может стать таким, как Альберт Эйнштейн. Биография, краткое содержание работ и интересные факты об ученом - все это вдохновляет, не правда ли?

— великий ученый, гениальный физик, который заложил основу развития современной физической теории. Родился он 14 марта 1879 года в германском городе Ульме. В школе Эйнштейн не выделялся большими успехами от других учеников. На его увлечение математикой и физикой оказали большое влияние произведения Канта. В Луитпольской гимназии выделяется прекрасным знанием точных наук. Вскоре семья переезжает в Италию, с 14 лет Эйнштейн вместе с семьей переезжает в Швейцарию. В швейцарской школе Аарау он получает аттестат, а затем поступает в Цюрихский политехникум, а в 1900 году закончил его. Наука дается Эйнштейну легко, так как считает, что материал не стоит заучивать, его следует лишь логически разобрать. Здесь же он нажил недоброжелателей в лице коллег и преподавателей из-за своих высказываний, противоречащие классической Ньютоновской теории. Из-за разногласий с преподавателями по окончанию Политехникума Эйнштейн не получил рекомендаций и отзывов, необходимых для устройства на работу.

Лишь в 1902 году он получает относительную финансовую стабильность, устроившись техническим экспертом в Берне. Работа в патентном бюро позволила ему в свободное время, а иногда и украдкой на работе, заниматься своими исследованиями. Он создает теорию относительности, проводит исследования по броуновскому движению, статистической физике, теории излучения, публикует ряд научных статей по физике молекул, статической механике. В этот же период открыл закон взаимосвязи массы и энергии, положенный в основу ядерной энергетики.

В 1914 году Эйнштейна приглашают преподавать в Берлинский университет. В этот период он усиленно работает над квантовой теорией излучения, завершает общую теорию относительности. В 1921 году он был удостоен Нобелевской премии за открытие законов фотоэффекта, были также отмечены его заслуги в области теоретической физики. Он является членом многочисленных научных обществ и почетным членом академий мира.

После прихода к власти фашистов Эйнштейн эмигрировал из Германии в США, отказывается в знак протеста от немецкого подданства, отказывается быть членом Баварской и Прусской Академий наук. В Америке Эйнштейн работал в Институте высших исследований. Он активно выступает против создания ядерного оружия и в своем письме к американскому президенту Рузвельту написанном в октябре 1939 года предупреждает о неминуемых страшных последствиях применения ядерного оружия. Он был одним из инициаторов создания после войны государства Израиль.

Albert Einstein

Гений первой половины 20 века. Ученый – которого стали признавать во всем мире. Интересная личность, интересная жизнь. Сегодня мы расскажем вам о жизни Алберта Эйнштейна в фактах.

Физик-теоретик, один из основателей современной теоретической физики, лауреат Нобелевской премии по физике 1921 года, общественный деятель-гуманист. Жил в Германии, Швейцарии и США. Почётный доктор около 20 ведущих университетов мира, член многих Академий наук, в том числе иностранный почётный член АН СССР.

Эйнштейн родился в еврейской семье, которая была небогата. Его отец, Герман, работал на предприятии по набивке перин и матрасов. Мать, Паулина (в девичестве Кох) была дочерью кукурузного торговца.

У Альберта была младшая сестра Мария.

В родном городе будущий учёный не прожил и года, так как семья в 1880 году уехала жить в Мюнхен.

В Мюнхене где Герман Эйнштейн вместе с братом Якобом основал небольшую фирму по торговле электрическим оборудованием.

Мать обучала маленького Альберта игре на скрипке, и он до конца жизни оставлял музыкальных занятий.

Уже находясь в США в Принстоне, в 1934 году Альберт Эйнштейн дал благотворительный концерт, где исполнял на скрипке произведения Моцарта в пользу эмигрировавших из нацистской Германии учёных и деятелей культуры.

В гимназии (ныне Гимназия имени Альберта Эйнштейна в Мюнхене) он не был в числе первых учеников.

Начальное образование Альберт Эйнштейн получил в местной католической школе. По его собственным воспоминаниям, он в детстве пережил состояние глубокой религиозности, которое оборвалось в 12 лет.

Через чтение научно-популярных книг он пришёл к убеждению, что многое из того, что изложено в Библии, не может быть правдой, а государство намеренно занимается обманом молодого поколения.

В 1895 году он поступает в школу Арау в Швейцарии и успешно её заканчивает.

В Цюрихе в 1896 году Эйнштейн поступил в Высшее техническое училище. Закончив его в 1900 году, будущий учёный получил диплом преподавателя физики и математики.

Во время Второй мировой войны Эйнштейн был консультантом по техническим вопросам в Военно-морских силах США. Доподлинно известно, что русская разведка не раз подсылала к нему своих агентов за секретными сведениями.

В 1894 году Эйнштейны переехали из Мюнхена в итальянский город Павию, близ Милана, куда братья Герман и Якоб перевели свою фирму. Сам Альберт оставался с родственниками в Мюнхене ещё некоторое время, чтобы окончить все шесть классов гимназии.

Осенью 1895 года Альберт Эйнштейн прибыл в Швейцарию, чтобы сдать вступительные экзамены в Высшее техническое училище (Политехникум) в Цюрихе.

После окончания Политехникума Эйнштейн, испытывая нужду в деньгах, начал искать работу в Цюрихе, но не мог устроиться даже на должность обычного школьного учителя.

Известная фотография, где Эйнштейн показывает язык, была сделана для назойливых журналистов, которые просили великого учёного всего лишь улыбнуться в камеру.

После окончания Политехникума Эйнштейн, испытывая нужду в деньгах, начал искать работу в Цюрихе, но не мог устроиться даже на должность обычного школьного учителя. Этот голодный в буквальном смысле слова период в жизни великого учёного сказался на его здоровье: голод стал причиной серьёзного заболевания печени.

После смерти Эйнштейна удалось найти его блокнот, который полностью был исписан исчислениями.

С трудоустройством Альберту помог его бывший однокурсник, Марсель Гроссман. По его рекомендациям, в 1902 году Альберт устроился экспертом III класса в бёрнское Федеральное Бюро патентования изобретений. Учёный вплоть до 1909 года оценивал заявки на изобретения.

В 1902 году Эйнштейн теряет отца.

Эйнштейн работал в Бюро патентов с июля 1902 года по октябрь 1909 года, занимаясь преимущественно экспертной оценкой заявок на изобретения. В 1903 году он стал постоянным работником Бюро. Характер работы позволял Эйнштейну посвящать свободное время исследованиям в области теоретической физики.

С 1905 года фамилию Эйнштейна узнают все физики мира. Журнал «Анналы физики» опубликовал сразу три его статьи, которые ознаменовали собой начало научной революции. Они были посвящены теории относительности, квантовой теории, статистической физике.

Эйнштейну приходилось работать электриком.

“Почему именно я создал теорию относительности? Когда я задаю себе такой вопрос, мне кажется, что причина в следующем. Нормальный взрослый человек вообще не задумывается над проблемой пространства и времени. По его мнению, он уже думал об этой проблеме в детстве. Я же развивался интеллектуально так медленно, что пространство и время занимали мои мысли, когда я стал уже взрослым. Естественно, я мог глубже проникать в проблему, чем ребёнок с нормальными наклонностями”.

Однако немало учёных сочли «новую физику» чересчур революционной. Она отменяла эфир, абсолютное пространство и абсолютное время, ревизовала механику Ньютона, которая 200 лет служила опорой физики и неизменно подтверждалась наблюдениями.

Алименты жене Эйнштейн не мог выплачивать. Он ей предложил в случае получения Нобелевской премии отдать все деньги.

Среди самых близких друзей великого учёного был Чарли Чаплин.

Пользуясь невероятной популярностью собственной персоны, ученый некоторое время брал за каждый автограф по одному доллару. Вырученные деньги он пожертвовал на благотворительность.

6 января 1903 года Эйнштейн женился на двадцатисемилетней Милеве Марич. У них родились трое детей. Первой, ещё до брака, родилась дочь Лизерль (1902), но выяснить её судьбу биографам не удалось.

Эйнштейн говорил на 2 языках.

Ганс-Альберт, старший сын Эйнштейна, стал большим специалистом по гидравлике, профессором Калифорнийского университета.

Любимым увлечением Эйнштейна было плавание под парусом. Плавать на воде он не умел.

В 1914 году семья распадается: Эйнштейн уезжает в Берлин, оставляя жену с детьми в Цюрихе. В 1919 году состоялся официальный развод.

Чаще всего гений не надевал на себя носки, потому что он их не любил носить.

После его смерти в 1955 г., патологоанатом Томас Харвей извлек мозг ученого и сделал его фотоснимки под разными углами. Затем, разрезав мозг на множество мелких частей, он на протяжении 40 лет посылал их в различные лаборатории для исследования лучшими неврологами мира.

Эдуард, младший сын великого учёного, был болен тяжёлой формой шизофрении и умер в психиатрической лечебнице Цюриха.

В 1919 году, получив развод, Эйнштейн женился на Эльзе Лёвенталь (в девичестве Эйнштейн), своей двоюродной сестре по линии матери. Он удочеряет двух её детей. В 1936 году Эльза умерла от сердечной болезни.

Последние слова Эйнштейна остались тайной. Возле него сидела американка, а свои слова он произнес на немецком языке.

В 1906 году Эйнштейн получил степень доктора наук. К этому времени он приобретает уже всемирную славу: физики всего мира пишут ему письма, приезжают к нему знакомиться. Эйнштейн знакомится с Планком, с которым их связывала долгая и крепкая дружба.

Альберт Эйнштейн очень любил «Максимы» выдающегося французского мыслителя и политического деятеля Франсуа де Ларошфуко. Он их постоянно перечитывал.

В 1909 году ему предложили работать в Цюрихском университете на должности экстраординарного профессора. Однако из-за маленькой зарплаты Эйнштейн вскоре соглашается на более выгодное предложение. Его пригласили возглавить кафедру физики в Немецком университете Праги.

Над великим гением всегда насмехались в младшей школе.

Во время Первой мировой войны учёный открыто высказывает свои пацифистские взгляды и продолжает научные открытия. После 1917 года обостряется заболевание печени, проявляется язва желудка и начинается желтуха. Даже не вставая с постели, Эйнштейн продолжал свои научные изыскания.

Накануне смерти Эйнштейну предлагали сделать операцию, но он отказался, сказав, что «искусственное продление жизни не имеет смысла».

В 1920 году после тяжёлой болезни умирает мать Эйнштейна.

В литературе гений физики предпочитал Достоевского, Толстого и Бертольда Брехта.

За 1921 год Эйнштейн наконец становится Нобелевским лауреатом.

В 1923 году Эйнштейн выступил в Иерусалиме, где намечалось вскоре (1925 год) открыть Еврейский университет.

В 1827 году Роберт Броун наблюдал под микроскопом и впоследствии описал хаотическое движение цветочной пыльцы, плававшей в воде. Эйнштейн, на основе молекулярной теории, разработал статистико-математическую модель подобного движения.

Последний труд Альберта Эйнштейна был сожжен.

В 1924 году молодой индийский физик Шатьендранат Бозе в кратком письме обратился к Эйнштейну с просьбой помочь в публикации статьи, в которой выдвигал предположение, положенное в основу современной квантовой статистики. Бозе предложил рассматривать свет в качестве газа из фотонов. Эйнштейн пришёл к выводу, что эту же статистику можно использовать для атомов и молекул в целом.

В 1925 году Эйнштейн опубликовал статью Бозе в немецком переводе, а затем собственную статью, в которой излагал обобщённую модель Бозе, применимую к системам тождественных частиц с целым спином, называемых бозонами. На основании данной квантовой статистики, известной ныне как статистика Бозе - Эйнштейна, оба физика ещё в середине 1920-х годов теоретически обосновали существование пятого агрегатного состояния вещества - конденсата Бозе - Эйнштейна.

В 1928 году Эйнштейн проводил в последний путь Лоренца, с которым очень подружился в его последние годы. Именно Лоренц выдвинул кандидатуру Эйнштейна на Нобелевскую премию в 1920 году и поддержал её в следующем году.

Мой пацифизм - это инстинктивное чувство, которое владеет мной потому, что убийство человека отвратительно. Моё отношение исходит не из какой-либо умозрительной теории, а основано на глубочайшей антипатии к любому виду жестокости и ненависти.

В 1929 году мир шумно отметил 50-летие Эйнштейна. Юбиляр не принял участия в торжествах и скрылся на своей вилле близ Потсдама, где с увлечением выращивал розы. Здесь он принимал друзей - деятелей науки, Рабиндраната Тагора, Эммануила Ласкера, Чарли Чаплина и других.

В 1952 г., когда государство Израиль только-только начало формироваться в полноценную державу, великому ученому предложили стать президентом. Разумеется, физик наотрез отказался от столь высокого поста, сославшись на то, что он ученый, и для управления страной ему не хватает опыта.

В 1931 году Эйнштейн снова побывал в США. В Пасадене его очень тепло встретил Майкельсон, которому оставалось жить четыре месяца. Вернувшись летом в Берлин, Эйнштейн в выступлении перед Физическим обществом почтил память замечательного экспериментатора, заложившего первый камень фундамента теории относительности.

В 1955 году здоровье Эйнштейна резко ухудшилось. Он написал завещание и сказал друзьям: «Свою задачу на Земле я выполнил». Последним его трудом стало незаконченное воззвание с призывом предотвратить ядерную войну.

Альберт Эйнштейн умер ночью 18 апреля 1955 года в Принстоне. Причиной смерти стал разрыв аневризмы аорты. По его личному завещанию, похороны состоялись без широкой огласки, на них присутствовало всего 12 близких и родных ему людей. Тело сожгли в крематории Юинг-Семетери, пепел развеяли по ветру.

В 1933 году Эйнштейну пришлось покинуть Германию, к которой он был очень привязан, навсегда.

В США Эйнштейн мгновенно превратился в одного из самых известных и уважаемых людей страны, получив репутацию гениальнейшего учёного в истории, а также олицетворения образа «рассеянного профессора» и интеллектуальных возможностей человека вообще.

Альберт Эйнштейн был убеждённым демократическим социалистом, гуманистом, пацифистом и антифашистом. Авторитет Эйнштейна, достигнутый благодаря его революционным открытиям в физике, позволял учёному активно влиять на общественно-политические преобразования в мире.

Религиозные взгляды Эйнштейна являются предметом давних споров. Некоторые утверждают, что Эйнштейн верил в существование Бога, другие называют его атеистом. И те, и другие использовали для подтверждения своей точки зрения слова великого учёного.

В 1921 году Эйнштейн получил телеграмму от нью-йоркского раввина Герберта Гольдштейна: «Верите ли вы в Бога тчк оплаченный ответ 50 слов». Эйнштейн уложился в 24 слова: «Я верю в Бога Спинозы, который проявляет себя в закономерной гармонии бытия, но вовсе не в Бога, который хлопочет о судьбах и делах людей». Ещё более резко он выразился в интервью «Нью-Йорк Таймс» (ноябрь 1930 года): «Я не верю в Бога, который награждает и карает, в Бога, цели которого слеплены с наших человеческих целей. Я не верю в бессмертие души, хотя слабые умы, одержимые страхом или нелепым эгоизмом, находят себе пристанище в такой вере»

Эйнштейну были присвоены почётные докторские степени от многочисленных университетов, в том числе: Женевы, Цюриха, Ростока, Мадрида, Брюсселя, Буэнос-Айреса, Лондона, Оксфорда, Кембриджа, Глазго, Лидса, Манчестера, Гарварда, Принстона, Нью-Йорка (Олбени), Сорбонны.

В 2015 году в Иерусалиме, на территории Еврейского университета, был установлен памятник Эйнштейну работы московского скульптора Георгия Франгуляна.

Популярность Эйнштейна в современном мире столь велика, что возникают спорные моменты в широком использовании имени и внешности учёного в рекламе и торговых марках. Поскольку Эйнштейн завещал часть своего имущества, в том числе использование его изображений, Еврейскому университету в Иерусалиме, бренд «Альберт Эйнштейн» был зарегистрирован в качестве торговой марки.

Подписывая одну из фотографий с высунутым языком, гений сказал, что его жест адресован всему человечеству. Как уж тут без метафизики! К слову сказать, современники всегда подчеркивали тонкий юмор ученого и умение остроумно шутить.

Источник-интернет


Альберт Эйнштейн, талантливый ученый и физик, создатель теории относительности и один из создателей квантовой теории и статистической физики, родился 14 марта 1879 г. в Германии в маленьком городке под названием Ульма. Его предки, евреи-иммигранты, переселились в Вюртемберг в 15 в. Они жили там, в сельских общинах, занимались торговлей и ремеслом и по укладу жизни, языку и образу мышления полностью слились с коренным населением.

Отец физика, Герман Эйнштейн, выделялся в школе своими математическими способностями, однако его родители не обладали средствами. Чтобы дать ему высшее образование, поэтому он выбрал торговую профессию и в 1877г. открыл в Ульме магазин электротехнических товаров. Мать, Паулина Энштейн-Кох, дочь богатого торговца зерном, была музыкально одаренной женщиной. Музыкальность матери и математические способности отца не только передались сыну, но и проявились у него гораздо более ярко. Альберт Эйнштейн блестяще играл на скрипке.

Через год после рождения Альберта семья Эйнштейнов переезжает в г. Мюнхен. Там отец построил в пригороде жилой дом, а также мастерскую, в которой изготавливалась различная электротехническая аппаратура: динамо-машины, дуговые лампы и измерительные инструменты - технические новинки, которые в эпоху газового освещения еще с трудом пробивали себе дорогу. У маленького Альберта были большие трудности в умственном развитии: он долго не разговаривал, долго учился говорить, в семилетнем возрасте мог лишь повторять короткие фразы. Даже в 9 лет он говорил недостаточно бегло. Родители и родственники с отчаянием полагали, что их любимый Альберт-тупица. У них были для этого все основания в 1954г. в одном из своих писем Эйнштейн вспоминал: «Мои родители были обеспокоены тем, что я начал говорить сравнительно поздно, они даже консультировались по этому поводу с врачом. Не могу точно сказать, сколько лет мне было в ту пору, но не меньше трех. "Действительно, поздновато для того чтобы начать говорить. В своем письме Эйнштейн продолжает: «Я так и не стал оратором. Однако мое последующее развитие проходило вполне нормально, за исключением одной особенности - я обычно шепотом повторял свои собственные слова». Даже если это так, то с учетом того, что маленькому Альберту предстояло стать не кем другим, как Эйнштейном, такое начало едва ли можно считать благоприятным.

Что же сыграло определенную роль в развитии будущего физика мирового масштаба?

Еще до того, как Эйнштейн поступил в школу, отец однажды подарил ему компас. Этот простой предмет с неожиданной силой возбудил любознательность мальчика: его поразило, что стрелка компаса всегда устанавливалась в одном и том же направлении. Здесь еще в детской наивной форме проявилась его заинтересованность проблемой свойств поля и структуры пространства, которая впоследствии столь живо занимала Эйнштейна-физика и которую он гениально решил в своей теории относительности.

Спустя несколько лет произошло еще одно событие, которое произвело яркое впечатление и оказало большое влияние на Эйнштейна, уже посещавшего младшие классы гимназии: в начале учебного года ему попал в руки маленький учебник Евклидовой геометрии, поглотившем все внимание Альберта. Ему в то время было 12 лет, и этот учебник произвел на него столь же сильное впечатление, как 7 лет назад - магнитный компас. В своих автобиографических набросках Эйнштейн с восхищением вспоминал о «священной книжечке по геометрии»: «Там были утверждения, например, о пересечении трех высот треугольника в одной точке, которые, хотя и не были сами по себе очевидны, но могли быть доказаны с уверенностью, исключавшей как будто всякие сомнения. Эта ясность и уверенность произвели на меня не менее неописуемое впечатление». Учебник геометрии - «священная книжечка по геометрии», как он сам называл ее впоследствии, - снова вызвала то «божественное любопытство», которое Эйнштейн считал первоисточником всех естественнонаучных и технических достижений. Оно побудило любознательного мальчика в один присест самостоятельно изучить всю книгу, не дожидаясь проработки отдельных ее разделов на уроках в соответствии со школьной программой.

И наблюдение за стрелкой компаса, неизменно поворачивающейся к северному полюсу, и знакомство с геометрическими аксиомами определили направление духовного развития склонного к размышлениям мальчика. Они оказали глубокое влияние на метод работы будущего исследователя и мыслителя.

Маленький Альберт был по натуре нелюдимым. Когда дети родственников приходили поиграть в саду, он почти не принимал участия в их шумных забавах. «Альбертль», как его называли родители, часто держался в стороне и от своих школьных сверстников. Больше всего он любил заниматься в одиночестве своими кубиками или выпиливать лобзиком. Как сам Эйнштейн говорил впоследствии, он всегда был ярко выраженным одиночкой.

О своих школьных годах Эйнштейн вспоминал с горечью. Особенно не нравились ему грубая муштра и механическая зубрежка, которым в те времена отдавалось предпочтение как методам воспитания и обучения. Это отвращение усилилось, когда в десятилетнем возрасте Альберт перешел из начальной школы в гимназию. В 1955г., отвечая на одно из писем, Эйнштейн вспоминал: «Учеником я был не слишком хорошим, ни плохим. Моим самым слабым местом была плохая память, особенно на слова и тексты.» И действительно, преподаватель греческого языка как-то в сердцах сказал ему: «Из вас никогда ничего путного не выйдет». Подобное высказывание вряд ли характеризует Альберта как прекрасного ученика. Но далее Эйнштейн продолжает: «Только по физике и математике я шел благодаря самостоятельным знаниям далеко впереди школьной программы, да еще по философии - в той мере, в какой она входила в программу».

Таким образом, занятия в школе и в гимназии, особенно когда в связи с переездом родителей в Италию 15-летний Альберт остался один, давались с трудом. Средний балл по успеваемости колебался между «3» и «4» по 5-балльной системе. Альберт был высоким нескладным подростком, который скучал на уроках. Не зря школьные товарищи еще раньше дали ему прозвище «Biedermeier», что означает нечто вроде Простака. Будучи от природы бесхитростным, он не умел достаточно хорошо скрывать свою неприязнь к преподавателям гимназии и их драконовским методам. Естественно, это не прибавляло ему симпатии в глазах учителей. Не снискал он их расположения и тем, что задавал вопросы, на которые они затруднялись ответить. В одном из писем, относящихся к 1940г., Эйнштейн следующим образом описал сложившуюся в то время ситуацию «Когда я был в 7 классе гимназии, меня вызвал классный наставник и выразил желание, чтобы я оставил гимназию. На мое возражение, что я ничем не провинился. Он ответил лишь «Одного вашего присутствия достаточно, чтобы подорвать уважение класса ко мне». Это был тот самый преподаватель греческого языка, который предсказывал, что из Эйнштейна ничего путного не выйдет.

Рассказывают, однажды на уроке математики весь класс не смог решить домашнюю задачу. Это очень раззадорило Альберта, и он тут же перед уроком углубился в ее решение. И одолел-таки. С этого момента молодой Эйнштейн стал первым учеником в классе по математике и физике. Таким образом, вырисовывается ясная картина развития молодого Альберта. Ключом к пониманию этого развития являются слова «самостоятельные занятия», которые были решающим образом связаны с его необычной любознательностью и способностью удивляться.

Итак, в 15 лет Альберт неожиданно остался один. Занятия в гимназии не спасали от одиночества. Устав от учебной зубрежки и испытывая отвращение к полувоенным методам воспитания,16-летний Эйнштейн весной 1895г. под благовидным предлогом покинул школу в Мюнхене и поехал к своим родителям в Италию. Родители были поражены и мало обрадованы тому, что Альберт прервал свое обучение за год до окончания гимназии. Однако он заверил их, что сможет, занимаясь самостоятельно, приобрести знания, необходимые для поступления в Высшее техническое училище. Эйнштейн хотел стать инженером. Но получилось все иначе. Он не захотел омрачать свою вновь обретенную свободу ни исполнением обязанностей, ни хлопотами о будущем. Он упивался свободой и занимался только своими любимыми предметами. Со своим другом он совершил сказочное путешествие через Аппенины до Женевы. Музеи, шедевры искусства, архитектура старинных соборов, концерты, книги, друзья, жаркое солнце Италии, свободные, сердечные люди-все это слилось в бурное приключение, несущее спасение и самопознание.

Но эта идиллия не могла длиться вечно. Неблагоприятное материальное положение родителей вынудило молодого Эйнштейна как можно скорее приступить к учебе ради хлеба насущного. Осенью 1895г. он направляется в Швейцарию, чтобы поступить в федеральный «Политехникум», т.е. в Высшее техническое училище в Цюрихе. Но так как он не мог предоставить документа об окончании средней школы, ему пришлось сдавать особые приемные испытания, однако его знания оказались недостаточными, и его постигла неудача. По совету ректора Эйнштейн поступил в Швейцарскую кантональную школу в г. Аарау, чтобы закончить среднее образование и получить зрелости. В зрелости в период пребывания в этой школе Эйнштейн принял решение стать не инженером, а преподавателем физики. Он сдал выпускные экзамены и в 1896г. был принят в Цюрихский политехникум.

4 года учебы в политехникуме были не слишком приятными. Альберт оказался не слишком дисциплинированным студентом. Лекции он посещал нерегулярно, без особого энтузиазма. Большую часть времени он использовал для самостоятельных занятий, с восторгом уходя в удивительный мир науки, ставил эксперименты и изучал первоисточники-труды великих пионеров естествознания и философии. Некоторые из этих трудов он читал вместе со своей однокурсницей сербского происхождения, Милевой Марич, которая была старше его на 4 года и на которой он впоследствии женился. Эйнштейну было трудно и потому, что он не признавал никаких авторитетов, в том числе и преподавателей. Профессор Генрик Вебер как-то раз сказал Эйнштейну с явным раздражением: «Вы умный малый, Эйнштейн, но в вас есть большой недостаток - вы не терпите замечаний».

Тем не менее, Эйнштейн полностью использовал студенческие годы для своего образования - прежде всего путем самостоятельных занятий. Так, он прочел «со священным рвением» основные труды Кирхгофа, Гельмгольца, Герца, Больцмана, Лоренца и Максвелла. Летом 1900г. Эйнштейн получил диплом преподавателя физики. Но найти постоянную работу не удавалось в течение двух лет. Эйнштейн перебивался случайными заработками, пока с большим трудом не получил место технического эксперта-стажера 3 класса в Швейцарском Бюро Патентов. С этого момента Эйнштейн отдается любимой исследовательской работе на протяжении целых 7 лет. В 1905г. появляется его статья «О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории», в которой он с помощью статистических частиц, их размерами и коэффициентом вязкости, используемой жидкости существует количественная взаимосвязь, которая может быть экспериментально проверена. Речь идет о «Броуновском движении». Английский ботаник Роберт Броун наблюдал под микроскопом хаотическое перемещение цветочной пыльцы помещенной в жидкость, и чем теплее жидкость, тем интенсивнее пылинки движутся. Работы Эйнштейна по молекулярной физике доказали правильность представления о том, что теплота - есть форма энергии неупорядоченного движения молекул. Одновременно они подтвердили атомистическую гипотезу, согласно которой материя - в физическом понимании - состоит из молекул и атомов. Предложенный Эйнштейном метод определения размеров молекул позволяет определить число молекул. Оказалось, что размер молекул сахара был приблизительно 6,2*10-8 см.

Работая в Бюро патентов, Эйнштейн применил революционную идею Макса Планка о квантах в теории света и к теории теплового движения молекул в твердых телах. Идея квантов явно противоречила и теории Ньютона, и теории Максвелла. Столкнулись в противоречии волновая и квантовая теории света. Эйнштейн применил свою идею.

Хотя свет и представляет собой волновой процесс, непрерывно распространяющийся в пространстве, однако на отдельных участках световая энергия способна оказывать физическое воздействие. Таким образом, появилась частица света - световой квант. Ее назвали фотоном. Учение Эйнштейна о световых квантах четко объясняло фотоэлектрический эффект: максимальная энергия фотоэлектронов линейно зависит от частоты падающего света и не зависит от его интенсивности (закон Эйнштейна). За это исследование ученому была присуждена Нобелевская пре6мия в 1921г.

В 1905г. Эйнштейн не без трудностей защитил в Цюрихском университете диссертацию на соискание доктора философии, а весной 1909г. стал профессором в этом университете. Затем переезд в Прагу и снова Цюрих. В начале апреля 1914г. Альберт Эйнштейн прибыл в Берлин. Теперь он стал полноправным членом академии наук и преподавателем в Гумбольдтском университете. С этого времени у Эйнштейна вплоть до прихода новой власти Адольфа Гитлера начались самые плодотворные годы в его научной, творческой и исследовательской деятельности. Чего стоит только знаменитое уравнение

согласно которому каждый клочок земли, каждое перышко, каждая пылинка становятся громадным резервуаром заключенной в них энергии (уравнение открыто в 1907г.).

Главная научная работа Эйнштейна - это теория относительности, которая по существу является общей теорией пространства, времени и тяготения. Из постоянства скорости света вытекают два «знаменитых» парадокса теории относительности:

1)размеры быстро движущихся тел (при скоростях, близких к скорости света) сокращаются в направлении их движения.

2)Замедление хода часов быстродвижущейся системе (парадокс близнецов).

Это когда космонавт летает во Вселенной достаточно долго, а по возвращении на Землю оказывается, что его брат-близнец гораздо старше его.

Эти научные выводы до сих пор вызывают споры. Специальная теория относительности стала необходимым орудием физических исследований (напр., в ядерной физике и физике элементарных частиц), ее выводы получили полное экспериментальное подтверждение.

В 1915г. Энштейн вывел уравнение гравитационного поля. Эта работа заложила основы общей теории относительности.

Научные труды Эйнштейна сыграли выдающуюся роль в развитии современной физики. Специальная теория относительности и квантовая теория излучения явились основой квантовой электродинамики, квантовой теории поля, атомной и ядерной физики, физики элементарных частиц, квантовой электроники.

За свои убеждения Эйнштейн вынужден был бежать из фашистской Германии в 1933г. Он обосновался в США в г. Принстон (штат Нью-Джерси), где работал до конца своих дней(18 апреля 1955г.).

Идеи Эйнштейна и его открытий были признаны учеными всего мира и создали ему международный авторитет.

Альберта Эйнштейна очень волновали общественно-политические события 20-40-х гг. Он решительно выступал против фашизма, войны, применения ядерного оружия. Хотя сам был причастен к теоретическим разработкам первых атомных бомб, сброшенных американцами на мирные японские города Хиросиму и Нагасаки в августе 1945г.

Эйнштейн был другом Советского Союза. Он искренне приветствовал революцию русских рабочих и крестьян 1917г. Свое уважение к вождю Великой Октябрьской социалистической революции и к создателю советского государства он выразил через несколько лет в следующих словах: «Я чту в Ленине человека, который с полным самопожертвованием отдал все свои силы делу осуществления социальной справедливости. Я не считаю его метод целесообразным. Но одно бесспорно: подобные ему люди являются хранителями и обновителями совести человечества»

Эйнштейн был членом многих научных обществ и академий мира, в том числе почетным членом Академии Наук СССР.

Большой вклад Эйнштейна в познании Вселенной, ее структуры, функционирования. Однако предложения Эйнштейна о статической Вселенной не подтвердились: Вселенная расширяется, Галактики разбегаются со скоростью 12000км/сек и выше.

Летом 1919г. Эйнштейн расторгнул брак со своей женой Милевой и женился на своей двоюродной сестре Эльзе. О Милеве Марич нужно сказать особо. Похоже, что эта женщина сыграла в становлении Эйнштейна-ученого выдающуюся роль. В самом деле, они познакомились, будучи студентами Цюрихского политехнического института, когда Эйнштейну было только 17 лет, в 1896г., а свой брак зарегистрировали только в 1903г. Мелева Марич, по сведениям ее современников, отличалась неординарным мышлением. Она была гораздо старше Альберта, страстно увлекалась физикой и даже в стенах Цюрихского политехнического института самостоятельно сконструировала и построила уникальный прибор для измерения слабых токов. Прибор не простой, а специально для опытов по фотоэффекту. Однако в заявке на его патентование почему-то присутствуют другие авторы - Эйнштейн и Хабихт. Но это еще не все. Бесспорные факты говорят о том, что математические выкладки в трудах Эйнштейна той поры правились рукой Марич.

И это была правка высокоодаренного математика, беспощадного к ошибкам мужа. Она была не просто супругой Альберта и матерью его двоих сыновей, но еще и соавтором его важнейших трудов, в том числе и специальной теории относительности. В бракоразводном документе 1919г. Эйнштейн собственноручно пишет, что он, если получит Нобелевскую премию, то обязательно выдаст бывшей жене соответствующую сумму. Значит, речь идет о семейной работе. И Эйнштейн аккуратно выполняет свое обязательство в 1923г.

Большие споры в научных кругах вызвало сообщение о присуждении Эйнштейну Нобелевской премии. Филипп Ленард, как один из один из лауреатов Нобелевской премии, обратился в Нобелевский комитет в Стокгольме с полным яростного протеста письмом, в котором он доказывал, что работы Эйнштейна по фотоэффекту слишком незначительны, чтобы им стоило присуждать такую высокую награду. И действительно, сам фотоэффект был открыт в 1887г. Герцем. В 1888г. фотоэффект был экспериментально проверен русским ученым А. Г. Столетовым и им же был установлен «первый закон фотоэффекта», называемый законом Столетова. Он формулируется так: «Максимальный фотоэлектрический ток прямо пропорционален падающему лучистому потоку» Столетову, естественно, никто Нобелевской премии не присудил. Формулировка второго закона фотоэффекта (закон Эйнштейна) удивительно похожа на закон Столетова. Почему Эйнштейну присудили Нобелевскую премию через 17 лет после открытия закона по фотоэффекту, а не за создание теории относительности - загадка истории.

Эйнштейн прожил трудную жизнь, полную лишений и противоречий. Было все: и личные неудачи, и отчуждение части ученых, не понявших его до конца революционных идей мыслителя, и еврейские погромы. Но, в конце концов, мир признал заслуги ученого-философа, а Эйнштейн публично показал всему миру язык, как бы подводя итог своей деятельности.

В последние дни жизни Эйнштейн работал над так и не оконченной рукописью. В ней речь шла о том, что больше всего заботило ученого - о предотвращении ядерной войны. Это обращение великого борца за мир, который так часто брался за перо и выступал, призывая к взаимопониманию между народами, заканчивается словами: «Повсеместно развязанные политические страсти требуют своих жертв».

Эйнштейн, ненавидящий культ личности, запретил проведение каких-либо погребальных церемоний. Он не хотел, чтобы над его могилой произносились речи и не желал, чтобы ему поставили надгробный памятник. В зале крематория собрались лишь ближайшие родственники и друзья, чтобы в молчании проститься с ним. Согласно завещанию ученого, его прах был развеян по ветру.