Формулы веществ и их названия. H2O2 - что это за вещество? Где применяется Н2О2 сейчас

Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения идёт дискуссия на тему: Сомнения относительно терминологии. Химическая формула … Википедия

Химическая формула отражение информации о составе и структуре веществ с помощью химических знаков, чисел и разделяющих знаков скобок. В настоящее время различают следующие виды химических формул: Простейшая формула. Может быть получена опытным… … Википедия

Химическая формула отражение информации о составе и структуре веществ с помощью химических знаков, чисел и разделяющих знаков скобок. В настоящее время различают следующие виды химических формул: Простейшая формула. Может быть получена опытным… … Википедия

Химическая формула отражение информации о составе и структуре веществ с помощью химических знаков, чисел и разделяющих знаков скобок. В настоящее время различают следующие виды химических формул: Простейшая формула. Может быть получена опытным… … Википедия

Химическая формула отражение информации о составе и структуре веществ с помощью химических знаков, чисел и разделяющих знаков скобок. В настоящее время различают следующие виды химических формул: Простейшая формула. Может быть получена опытным… … Википедия

Основная статья: Неорганические соединения Список неорганических соединений по элементам информационный список неорганических соединений, представленный в алфавитном порядке (по формуле) для каждого вещества, водородные кислоты элементов (при их… … Википедия

Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

Химическим уравнением (уравнением химической реакции) называют условную запись химической реакции с помощью химических формул, числовых коэффициентов и математических символов. Уравнение химической реакции даёт качественную и количественную… … Википедия

Химическое программное обеспечение компьютерные программы, используемые в области химии. Содержание 1 Химические редакторы 2 Платформы 3 Литература … Википедия

Книги

  • Японско-англо-русский словарь по монтажу промышленного оборудования. Около 8 000 терминов , Попова И.С.. Словарь предназначен для широкого круга пользователей и прежде всего для переводчиков и технических специалистов, занимающихся поставками и внедрением промышленного оборудования из Японии или…
  • Краткий словарь биохимических терминов , Кунижев С.М.. Словарь предназначен для студентов химических и биологических специальностей университетов, изучающих курс общей биохимии, экологии и основ биотехнологии, а также может быть использован в…

В настоящее время химикам известно более 20 миллионов химических соединений. Очевидно, что запомнить названия десятков миллионов веществ не в состоянии ни один человек.

Именно поэтому Международным союзом теоретической и прикладной химии разработана систематическая номенклатура органических и неорганических соединений. Построена система правил, которая позволяет называть оксиды, кислоты, соли, комплексные соединения, органические вещества и т. д. Систематические названия имеют ясный, однозначный смысл. Например, оксид магния - это MgO, сульфат калия - CaSO 4 , хлорметан - CH 3 Cl и т. д.

Химик, открывший новое соединение, не сам выбирает ему название, а руководствуется четкими правилами ИЮПАК. Любой его коллега, работающий в любой стране мира, сможет по названию быстро построить формулу нового вещества.

Систематическая номенклатура удобна, рациональна и признана во всем мире. Существует, однако, небольшая группа соединений, для которых "правильная" номенклатура практически не применяется. Названия некоторых веществ используются химиками на протяжении десятилетий и даже столетий. Эти тривиальные названия более удобны, более привычны, и настолько прочно вошли в сознание, что практики не желают менять их на систематические. В действительности, даже правила ИЮПАК допускают использование тривиальных названий.

Ни один химик не назовет вещество CuSO 4 5H 2 O пентагидратом сульфата меди (II) . Гораздо проще использовать тривиальное название этой соли: медный купорос . Никто не будет спрашивать у коллеги: "Скажи, а у вас в лаборатории не осталось гексацианоферрата (III) калия?" Так ведь и язык сломать можно! Спросят иначе: "Красной кровяной соли не осталось?"

Коротко, удобно и привычно. К сожалению, тривиальные названия веществ не подчиняются никаким современным правилам. Их нужно просто запомнить. Да-да, химик должен помнить, что FeS 2 - это пирит , а под привычным всем термином "мел" скрывается карбонат кальция.

В приведенной ниже таблице перечислены некоторые наиболее часто встречающиеся тривиальные названия солей, оксидов, кислот, оснований и т. д. Обратите внимание: одно вещество может иметь несколько тривиальных названий. Например, хлорид натрия (NaCl) можно назвать галитом , а можно - каменной солью .

Тривиальное название Формула вещества Систематическое название
алмаз С углерод
алюмокалиевые квасцы KAl(SO 4) 2 12H 2 O додекагидрат сульфата алюминия-калия
ангидрит CaSO 4 сульфат кальция
барит BaSO 4 сульфат бария
берлинская лазурь Fe 4 3 гексацианоферрат (II) железа (III)
бишофит MgCl 2 6H 2 O гексагидрат хлорида магния
боразон BN нитрид бора
бура Na 2 B 4 O 7 10H 2 O декагидрат тетрабората натрия
водяной газ CO + H 2 водород + оксид углерода (II)
галенит PbS сульфид свинца (II)
галит NaCl хлорид натрия
гашеная известь Ca(OH) 2 гидроксид кальция
гематит Fe 2 O 3 оксид железа (III)
гипс CaSO 4 2H 2 O дигидрат сульфата кальция
глинозем Al 2 O 3 оксид алюминия
глауберова соль Na 2 SO 4 10H 2 O декагидрат сульфата натрия
графит С углерод
едкий натр NaOH гидроксид натрия
едкое кали KOH гидроксид калия
железный колчедан FeS 2 дисульфид железа
железный купорос FeSO 4 7H 2 O гептагидрат сульфата железа (II)
желтая кровяная соль K 4 гексацианоферрат (II) калия
жидкое стекло Na 2 SiO 3 силикат натрия
известковая вода раствор Ca(OH) 2 в воде раствор гидроксида кальция в воде
известняк CaCO 3 карбонат кальция
каломель Hg 2 Cl 2 дихлорид диртути
каменная соль NaCl хлорид натрия
киноварь HgS сульфид ртути (II)
корунд Al 2 O 3 оксид алюминия
красная кровяная соль K 3 гексацианоферрат (III) калия
красный железняк Fe 2 O 3 оксид железа (III)
криолит Na 3 гексафтороалюминат натрия
ляпис AgNO 3 нитрат серебра
магнезит MgСO 3 карбонат магния
магнетит Fe 3 O 4
магнитный железняк Fe 3 O 4 оксид дижелеза (III) - железа (II)
малахит Cu 2 (OH) 2 CO 3 карбонат гидроксомеди (II)
медный блеск Cu 2 S сульфид меди (I)
медный купорос CuSO 4 5H 2 O пентагидрат сульфата меди (II)
мел CaCO 3 карбонат кальция
мрамор CaCO 3 карбонат кальция
нашатырный спирт водный раствор NH 3 раствор аммиака в воде
нашатырь NH 4 Cl хлорид аммония
негашеная известь CaO оксид кальция
нитропруссид натрия Na 2 пенатцианонитрозилийферрат (II) натрия
олеум раствор SO 3 в H 2 SO 4 раствор оксида серы (VI) в конц. серной кислоте
перекись водорода H 2 O 2 пероксид водорода
пирит FeS 2 дисульфид железа
пиролюзит MnO 2 диоксид марганца
плавиковая кислота HF фтороводородная кислота
поташ K 2 СO 3 карбонат калия
реактив Несслера K 2 щелочной раствор тетраиодомеркурата (II) калия
родохрозит MnCO 3 карбонат марганца (II)
рутил TiO 2 диоксид титана
свинцовый блеск PbS сульфид свинца (II)
свинцовый сурик Pb 3 O 4 оксид дисвинца (III) - свинца (II)
селитра аммонийная NH 4 NO 3 нитрат аммония
селитра калийная KNO 3 нитрат калия
селитра кальциевая Ca(NO 3) 2 нитрат кальция
селитра натронная NaNO 3 нитрат натрия
селитра чилийская NaNO 3 нитрат натрия
серный колчедан FeS 2 дисульфид железа
сильвин KCl хлорид калия
сидерит FeCO 3 карбонат железа (II)
смитсонит ZnCO 3 карбонат цинка
сода кальцинированная Na 2 CO 3 карбонат натрия
сода каустическая NaOH гидроксид натрия
сода питьевая NaHCO 3 гидрокарбонат натрия
соль Мора (NH 4) 2 Fe(SO 4) 2 6H 2 O гексагидрат сульфата аммония-железа (II)
сулема HgCl 2 хлорид ртути (II)
сухой лед CO 2 (твердый) диоксид углерода (твердый)
сфалерит ZnS сульфид цинка
угарный газ CO оксид углерода (II)
углекислый газ CO 2 оксид углерода (IV)
флюорит CaF 2 фторид кальция
халькозин Cu 2 S сульфид меди (I)
хлорная известь смесь СаCl 2 , Ca(ClO) 2 и Ca(OH) 2 смесь хлорида кальция, гипохлорита кальция и гидроксида кальция
хромомокалиевые квасцы KCr(SO 4) 2 12H 2 O додекагидрат сульфата хрома (III)-калия
царская водка смесь HCl и HNO 3 смесь концентрированных растворов соляной и азотной кислот в объемном отношении 3:1
цинковая обманка ZnS сульфид цинка
цинковый купорос ZnSO 4 7H 2 O гептагидрат сульфата цинка

Примечание: природные минералы состоят из нескольких веществ. Например, в составе свинцового блеска можно найти соединения серебра. В таблице, естественно, указывается только основное вещество.

Вещества вида Х n H 2 O называют кристаллогидратами. В их состав входит т. н. "кристаллизационная" вода. Например, можно сказать, что сульфат меди (II) кристаллизуется из водных растворов с 5 молекулами воды. Получаем пентагидрат сульфата меди (II) (тривиальное название - медный купорос).


Если вас интересуют систематические названия, рекомендую обратиться к разделу "

Общеизвестна формула основы жизни - воды. Её молекула состоит из двух атомов водорода и одного кислорода, что записывается как H2O. Если же кислорода будет в два раза больше, то получится совсем другое вещество - H2O2. Что это и чем полученное вещество будет отличаться от своей «родственницы» воды?

H2O2 - что это за вещество?

Остановимся на нем подробнее. H2O2 - формула перекиси водорода, Да, той самой, которой обрабатывают царапины, белой. Пероксид водорода H2O2 - научное.

Для дезинфекции используют трехпроцентный раствор перекиси. В чистом или концентрированном виде она вызывает химические ожоги кожи. Тридцатипроцентный раствор перекиси иначе называют пергидроль; раньше его применяли в парикмахерских для обесцвечивания волос. Обожженная им кожа также становится белой.

Химические свойства Н2О2

Перекись водорода представляет собой жидкость без цвета и с «металлическим» привкусом. Является хорошим растворителем и сама легко растворяется в воде, эфире, спиртах.

Трёх- и шестипроцентные растворы перекиси обычно готовят, разбавляя тридцатипроцентный раствор. При хранении концентрированного Н2О2 происходит разложение вещества с выделением кислорода, поэтому в плотно закупоренных емкостях его хранить не следует во избежание взрыва. С уменьшением концентрации пероксида, повышается его устойчивость. Также для замедления разложения Н2О2 можно добавлять в него различные вещества, например, фосфорную или салициловую кислоту. Для хранения растворов сильной концентрации (более 90 процентов) в перекись добавляют пирофосфат натрия, который стабилизирует состояние вещества, а также используют сосуды из алюминия.

Н2О2 в химических реакциях может быть как окислителем, так и восстановителем. Однако чаще пероксид проявляет окислительные свойства. Перекись принято считать кислотой, но очень слабой; соли перекиси водорода называют пероксидами.

как метод получения кислорода

Реакция разложения Н2О2 происходит при воздействии на вещество высокой температуры (более 150 градусов Цельсия). В результате образуются вода и кислород.

Формула реакции - 2 Н2О2 + t -> 2 Н2О + О2

Степень окисления Н в Н 2 О 2 и Н 2 О = +1.
Степень окисления О: в Н 2 О 2 = -1, в Н 2 О = -2, в О 2 = 0
2 О -1 - 2е -> О2 0

О -1 + е -> О -2
2 Н2О2 = 2 Н2О + О2

Разложение перекиси водорода может произойти и при комнатной температуре, если использовать катализатор (химическое вещество, ускоряющее реакцию).

В лабораториях одним из методов получения кислорода, наряду с разложением бертолетовой соли или марганцовки, является реакция разложения перекиси. В таком случае в качестве катализатора используют оксид марганца (IV). Другие вещества, ускоряющие разложение H2O2, - медь, платина, гидроксид натрия.

История открытия перекиси

Первые шаги к открытию перекиси были сделаны в 1790 году немцем Александром Гумбольдтом, когда он обнаружил превращения оксида бария в пероксид при нагревании. Тот процесс сопровождался поглощением кислорода из воздуха. Через двенадцать лет учеными Тенаром и Гей-Люссаком был проведен опыт по сжиганию щелочных металлов с избытком кислорода, в результате чего был получен пероксид натрия. Но пероксид водорода был получен позже, лишь в 1818 году, когда Луи Тенар изучал воздействие кислот на металлы; для их устойчивого взаимодействия было необходимо низкое количество кислорода. Проводя подтверждающий опыт с перекисью бария и серной кислотой, ученый добавил к ним воду, хлористый водород и лёд. Через непродолжительное время, Тенар обнаружил на стенках емкости с пероксидом бария небольшие застывшие капли. Стало ясно, что это H2O2. Тогда дали полученному H2O2 название «окисленная вода». Это и была перекись водорода - бесцветная, ничем не пахнущая, трудноиспаримая жидкость, хорошо растворяющая другие вещества. Результат взаимодействия H2O2 и H2O2 - реакция диссоциации, перекись растворима в воде.

Интересный факт - быстро обнаружились свойства нового вещества, позволяющие использовать его в реставрационных работах. Сам Тенар при помощи пероксида отреставрировал картину Рафаэля, потемневшую от времени.

Перекись водорода в XX веке

После тщательного изучения полученного вещества его стали производить в промышленных масштабах. В начале двадцатого века ввели электрохимическую технологию производства перекиси, основанную на процессе электролиза. Но срок годности полученного таким методом вещества был невелик, около пары недель. Чистая перекись нестабильна, и по большей части её выпускали в тридцатипроцентной концентрации для отбеливания ткани и в трёх- или шестипроцентной - для бытовых нужд.

Учёные фашистской Германии использовали пероксид для создания ракетного двигателя на жидком топливе, который использовался для оборонных нужд во Второй Мировой войне. В результате взаимодействия Н2О2 и метанола/гидразина, получалось мощное топливо, на котором самолет достигал скорости более 950 км/ч.

Где применяется Н2О2 сейчас?

  • в медицине - для обработки ран;
  • в целлюлозно-бумажной промышленности используются отбеливающие свойства вещества;
  • в текстильной промышленности перекисью отбеливают натуральные и синтетические ткани, меха, шерсть;
  • как ракетное топливо или его окислитель;
  • в химии - для получения кислорода, как пенообразователь для производства пористых материалов, как катализатор или гидрирующий агент;
  • для производства дезинфицирующих или чистящих средств, отбеливателей;
  • для обесцвечивания волос (это устаревший метод, так как волосы сильно повреждаются пероксидом);

Перекись водорода можно успешно применять для решения разных бытовых задач. Но использовать в этих целях можно лишь трёхпроцентную перекись водорода. Вот некоторые способы:

  • Для очистки поверхностей нужно залить перекись в сосуд пульверизатором и разбрызгивать на загрязненные места.
  • Для дезинфекции предметов их нужно протереть неразбавленным раствором Н2О2. Это поможет очистить их от вредных микроорганизмов. Губки для мытья можно замочить в воде с перекисью (пропорция 1:1).
  • Для отбеливания тканей при стирке белых вещей добавляют стакан пероксида. Можно также выполоскать белые ткани в воде, смешанной со стаканом Н2О2. Этот способ возвращает белизну, предохраняет ткани от пожелтения и помогает удалить трудновыводимые пятна.
  • Для борьбы с плесенью и грибком следует смешать в емкости с пульверизатором перекись и воду в пропорции 1:2. Полученную смесь распылять на зараженные поверхности и через 10 минут очищать их при помощи щётки или губки.
  • Обновить потемневшую затирку в кафельной плитке можно, распылив пероксид на нужные участки. Через 30 минут нужно тщательно потереть их жесткой щёткой.
  • Для мытья посуды полстакана Н2О2 добавить в полный таз с водой (или раковину с закрытым сливом). Промытые в таком растворе чашки и тарелки будут сиять чистотой.
  • Чтобы очистить зубную щётку, нужно опустить её в неразведенный трёхпроцентный раствор перекиси. Затем промыть под сильной струей воды. Этот способ хорошо дезинфицирует предмет гигиены.
  • Чтобы продезинфицировать купленные овощи и фрукты, следует распылить на них раствор 1 части перекиси и 1 части воды, после чего тщательно промыть их водой (можно холодной).
  • На дачном участке при помощи Н2О2 можно бороться с болезнями растений. Нужно опрыскивать их раствором перекиси или замочить семена незадолго до посадки в 4,5 литрах воды, смешанной с 30 мл сорокапроцентной перекиси водорода.
  • Для оживления аквариумных рыбок, если они отравились аммиаком, задохнулись при отключении аэрации или по другой причине, можно попробовать поместить их в воду с перекисью водорода. Нужно смешать трёхпроцентную перекись с водой из расчёта 30 мл на 100 литров и поместить в полученную смесь бездыханных рыб на 15-20 минут. Если они не оживут за это время, значит, средство не помогло.

Даже в результате активного встряхивания бутылки с водой в ней образуется некоторое количество пероксида, так как вода при этом действии насыщается кислородом.

В свежих фруктах и овощах Н2О2 также содержится, пока они не подвергнутся термической обработке. При нагреве, варке, обжарке и других процессах с сопутствующей высокой температурой уничтожается большое количество кислорода. Именно поэтому прошедшие кулинарную обработку продукты считаются не такими полезными, хотя какое-то количество витаминов в них остается. Свежевыжатые соки или кислородные коктейли, подаваемые в санаториях, полезны по той же причине - из-за насыщения кислородом, который дает организму новые силы и очищает его.

Опасность перекиси при употреблении внутрь

После вышесказанного может показаться, что перекись можно специально принимать внутрь, и от этого будет польза организму. Но это совсем не так. В воде или соках соединение содержится в минимальных количествах и тесно связано с другими веществами. Прием же «ненатуральной» перекиси водорода внутрь (а вся перекись, купленная в магазине или произведенная в результате химических опытов самостоятельно, никак не может считаться натуральной, к тому же обладает слишком высокой концентрацией по сравнению с природной) может привести к опасным для жизни и здоровья последствиям. Чтобы понять - почему, нужно вновь обратиться к химии.

Как уже упомянуто, при некоторых условиях пероксид водорода разрушается и выделяет кислород, являющийся активным окислителем. может произойти при столкновении Н2О2 с пероксидазой - внутриклеточным ферментом. В основе использования перекиси для дезинфекции положены именно её окислительные свойства. Так, когда рану обрабатывают Н2О2 - выделяющийся кислород уничтожает живые патогенные микроорганизмы, попавшие в нее. Такое же действие она оказывает и на другие живые клетки. Если обработать неповрежденную кожу пероксидом, а потом протереть место обработки спиртом, почувствуется жжение, что подтверждает наличие микроскопических повреждений после перекиси. Но при внешнем применении перекиси низкой концентрации какого-то заметного вреда организму не будет.

Другое дело, если её пытаться принимать внутрь. То вещество, которое способно повреждать даже сравнительно толстую кожу снаружи, попадает на слизистые оболочки пищеварительного тракта. То есть происходят химические мини-ожоги. Разумеется, выделяющийся окислитель - кислород - может заодно убить и вредные микробы. Но этот же процесс произойдет и с клетками пищевого тракта. Если ожоги в результате действия окислителя будут повторяться, то возможна атрофия слизистых оболочек, а это - первый шаг на пути к раку. Гибель клеток кишечника приводит к невозможности организма усваивать питательные вещества, этим объясняется, например, снижение веса и исчезновение запоров у некоторых людей, практикующих «лечение» перекисью.

Отдельно нужно сказать о таком методе употребления перекиси, как внутривенные инъекции. Даже если по какой-то причине их назначил врач (оправдано это может быть лишь при заражении крови, когда других подходящих лекарств в наличии нет), то под медицинским наблюдением и со строгим расчетом дозировок риски все-таки есть. Но в такой экстремальной ситуации это будет шансом на выздоровление. Самому же назначать себе уколы перекиси водорода ни в коем случае нельзя. Н2О2 представляет большую опасность для клеток крови - эритроцитов и тромбоцитов, так как при попадании в кровеносное русло разрушает их. К тому же, может произойти смертельно опасная закупорка сосудов высвободившимся кислородом - газовая эмболия.

Меры безопасности в обращении с Н2О2

  • Хранить в недоступном для детей и недееспособных лиц месте. Отсутствие запаха и выраженного вкуса делает перекись особенно опасной для них, так как могут быть приняты большие дозы. При попадании внутрь раствора, последствия употребления могут быть непредсказуемыми. Необходимо незамедлительно обратиться к врачу.
  • Растворы перекиси концентрацией более трёх процентов вызывают ожоги при попадании на кожу. Место ожога нужно промыть большим количеством воды.

  • Не допускать попадания раствора пероксида в глаза, так как образуется их отек, покраснение, раздражение, иногда болевые ощущения. Первая помощь до обращения к врачу - обильное промывание глаз водой.
  • Хранить вещество так, чтобы было понятно, что это - H2O2, то есть в емкости с наклейкой во избежание случайного применения не по назначению.
  • Условия хранения, продлевающие его срок, - темное, сухое, прохладное место.
  • Нельзя смешивать пероксид водорода с любыми жидкостями, кроме чистой воды, в том числе и с хлорированной водой из-под крана.
  • Все вышесказанное применимо не только к Н2О2, но и ко всем содержащим его препаратам.

Классификация неорганических веществ с примерами соединений

Теперь проанализируем представленную выше классификационную схему более детально.

Как мы видим, прежде всего все неорганические вещества делятся на простые и сложные :

Простыми веществами называют такие вещества, которые образованы атомами только одного химического элемента. Например, простыми веществами являются водород H 2 , кислород O 2 , железо Fe, углерод С и т.д.

Среди простых веществ различают металлы , неметаллы и благородные газы:

Металлы образованы химическими элементами, расположенными ниже диагонали бор-астат, а также всеми элементами, находящимися в побочных группах.

Благородные газы образованы химическими элементами VIIIA группы.

Неметаллы образованы соответственно химическими элементами, расположенными выше диагонали бор-астат, за исключением всех элементов побочных подгрупп и благородных газов, расположенных в VIIIA группе:

Названия простых веществ чаще всего совпадают с названиями химических элементов, атомами которых они образованы. Однако для многих химических элементов широко распространено такое явление, как аллотропия. Аллотропией называют явление, когда один химический элемент способен образовывать несколько простых веществ. Например, в случае химического элемента кислорода возможно существование молекулярных соединений с формулами O 2 и O 3 . Первое вещество принято называть кислородом так же, как и химический элемент, атомами которого оно образовано, а второе вещество (O 3) принято называть озоном. Под простым веществом углеродом может подразумеваться любая из его аллотропных модификаций, например, алмаз, графит или фуллерены. Под простым веществом фосфором могут пониматься такие его аллотропные модификации, как белый фосфор, красный фосфор, черный фосфор.

Сложные вещества

Сложными веществами называют вещества, образованные атомами двух или более химических элементов.

Так, например, сложными веществами являются аммиак NH 3 , серная кислота H 2 SO 4 , гашеная известь Ca(OH) 2 и бесчисленное множество других.

Среди сложных неорганических веществ выделяют 5 основных классов, а именно оксиды, основания, амфотерные гидроксиды, кислоты и соли:

Оксиды — сложные вещества, образованные двумя химическими элементами, один из которых кислород в степени окисления -2.

Общая формула оксидов может быть записана как Э x O y , где Э — символ какого-либо химического элемента.

Номенклатура оксидов

Название оксида химического элемента строится по принципу:

Например:

Fe 2 O 3 — оксид железа (III); CuO — оксид меди (II); N 2 O 5 — оксид азота (V)

Нередко можно встретить информацию о том, что в скобках указывается валентность элемента, однако же это не так. Так, например, степень окисления азота N 2 O 5 равна +5, а валентность, как это ни странно, равна четырем.

В случае, если химический элемент имеет единственную положительную степень окисления в соединениях, в таком случае степень окисления не указывается. Например:

Na 2 O — оксид натрия; H 2 O — оксид водорода; ZnO — оксид цинка.

Классификация оксидов

Оксиды по их способности образовывать соли при взаимодействии с кислотами или основаниями подразделяют соответственно на солеобразующие и несолеобразующие .

Несолеобразующих оксидов немного, все они образованы неметаллами в степени окисления +1 и +2. Список несолеобразующих оксидов следует запомнить: CO, SiO, N 2 O, NO.

Солеобразующие оксиды в свою очередь подразделяются на основные , кислотные и амфотерные .

Основными оксидами называют такие оксиды, которые при взаимодействии с кислотами (или кислотными оксидами) образуют соли. К основным оксидам относят оксиды металлов в степени окисления +1 и +2, за исключением оксидов BeO, ZnO, SnO, PbO.

Кислотными оксидами называют такие оксиды, которые при взаимодействии с основаниями (или основными оксидами) образуют соли. Кислотными оксидами являются практически все оксиды неметаллов за исключением несолеобразующих CO, NO, N 2 O, SiO, а также все оксиды металлов в высоких степенях окисления (+5, +6 и +7).

Амфотерными оксидами называют оксиды, которые могут реагировать как с кислотами, так и основаниями, и в результате этих реакций образуют соли. Такие оксиды проявляют двойственную кислотно-основную природу, то есть могут проявлять свойства как кислотных, так и основных оксидов. К амфотерным оксидам относятся оксиды металлов в степенях окисления +3, +4, а также в качестве исключений оксиды BeO, ZnO, SnO, PbO.

Некоторые металлы могут образовывать все три вида солеобразующих оксидов. Например, хром образует основный оксид CrO, амфотерный оксид Cr 2 O 3 и кислотный оксид CrO 3 .

Как можно видеть, кислотно-основные свойства оксидов металлов напрямую зависят от степени окисления металла в оксиде: чем больше степень окисления, тем сильнее выражены кислотные свойства.

Основания

Основания — соединения с формулой вида Me(OH) x , где x чаще всего равен 1 или 2.

Исключения: Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 и Pb(OH) 2 не относятся к основаниям, несмотря на степень окисления металла +2. Данные соединения являются амфотерными гидроксидами, которые еще будут рассмотрены в этой главе более подробно.

Классификация оснований

Основания классифицируют по количеству гидроксогрупп в одной структурной единице.

Основания с одной гидроксогруппой, т.е. вида MeOH, называют однокислотными основаниями, с двумя гидроксогруппами, т.е. вида Me(OH) 2 , соответственно, двухкислотными и т.д.

Также основания подразделяют на растворимые (щелочи) и нерастворимые.

К щелочам относятся исключительно гидроксиды щелочных и щелочно-земельных металлов, а также гидроксид таллия TlOH.

Номенклатура оснований

Название основания строится по нижеследующему принципу:

Например:

Fe(OH) 2 — гидроксид железа (II),

Cu(OH) 2 — гидроксид меди (II).

В тех случаях, когда металл в сложных веществах имеет постоянную степень окисления, указывать её не требуется. Например:

NaOH — гидроксид натрия,

Ca(OH) 2 — гидроксид кальция и т.д.

Кислоты

Кислоты — сложные вещества, молекулы которых содержат атомы водорода, способные замещаться на металл.

Общая формула кислот может быть записана как H x A, где H — атомы водорода, способные замещаться на металл, а A — кислотный остаток.

Например, к кислотам относятся такие соединения, как H 2 SO 4 , HCl, HNO 3 , HNO 2 и т.д.

Классификация кислот

По количеству атомов водорода, способных замещаться на металл, кислоты делятся на:

— одноосновные кислоты : HF, HCl, HBr, HI, HNO 3 ;

— двухосновные кислоты : H 2 SO 4 , H 2 SO 3 , H 2 CO 3 ;

— трехосновные кислоты : H 3 PO 4 , H 3 BO 3 .

Следует отметить, что количество атомов водорода в случае органических кислот чаще всего не отражает их основность. Например, уксусная кислота с формулой CH 3 COOH, несмотря на наличие 4-х атомов водорода в молекуле, является не четырех-, а одноосновной. Основность органических кислот определяется количеством карбоксильных групп (-COOH) в молекуле.

Также по наличию кислорода в молекулах кислоты подразделяют на бескислородные (HF, HCl, HBr и т.д.) и кислородсодержащие (H 2 SO 4 , HNO 3 , H 3 PO 4 и т.д.). Кислородсодержащие кислоты называют также оксокислотами .

Более детально про классификацию кислот можно почитать .

Номенклатура кислот и кислотных остатков

Нижеследующий список названий и формул кислот и кислотных остатков обязательно следует выучить.

В некоторых случаях облегчить запоминание может ряд следующих правил.

Как можно видеть из таблицы выше, построение систематических названий бескислородных кислот выглядит следующим образом:

Например:

HF — фтороводородная кислота;

HCl — хлороводородная кислота;

H 2 S — сероводородная кислота.

Названия кислотных остатков бескислородных кислот строятся по принципу:

Например, Cl — — хлорид, Br — — бромид.

Названия кислородсодержащих кислот получают добавлением к названию кислотообразующего элемента различных суффиксов и окончаний. Например, если кислотообразующий элемент в кислородсодержащей кислоте имеет высшую степень окисления, то название такой кислоты строится следующим образом:

Например, серная кислота H 2 S +6 O 4 , хромовая кислота H 2 Cr +6 O 4 .

Все кислородсодержащие кислоты могут быть также классифицированы как кислотные гидроксиды, поскольку в их молекулах обнаруживаются гидроксогруппы (OH). Например, это видно из нижеследующих графических формул некоторых кислородсодержащих кислот:

Таким образом, серная кислота иначе может быть названа как гидроксид серы (VI), азотная кислота — гидроксид азота (V), фосфорная кислота — гидроксид фосфора (V) и т.д. При этом число в скобках характеризует степень окисления кислотообразующего элемента. Такой вариант названий кислородсодержащих кислот многим может показаться крайне непривычным, однако же изредка такие названия можно встретить в реальных КИМах ЕГЭ по химии в заданиях на классификацию неорганических веществ.

Амфотерные гидроксиды

Амфотерные гидроксиды — гидроксиды металлов, проявляющие двойственную природу, т.е. способные проявлять как свойства кислот, так и свойства оснований.

Амфотерными являются гидроксиды металлов в степенях окисления +3 и +4 (как и оксиды).

Также в качестве исключений к амфотерным гидроксидам относят соединения Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 и Pb(OH) 2 , несмотря на степень окисления металла в них +2.

Для амфотерных гидроксидов трех- и четырехвалентных металлов возможно существование орто- и мета-форм, отличающихся друг от друга на одну молекулу воды. Например, гидроксид алюминия (III) может существовать в орто-форме Al(OH) 3 или мета-форме AlO(OH) (метагидроксид).

Поскольку, как уже было сказано, амфотерные гидроксиды проявляют как свойства кислот, так и свойства оснований, их формула и название также могут быть записаны по-разному: либо как у основания, либо как у кислоты. Например:

Соли

Соли — это сложные вещества, в состав которых входят катионы металлов и анионы кислотных остатков.

Так, например, к солям относятся такие соединения как KCl, Ca(NO 3) 2 , NaHCO 3 и т.д.

Представленное выше определение описывает состав большинства солей, однако же существуют соли, не попадающие под него. Например, вместо катионов металлов в состав соли могут входить катионы аммония или его органические производные. Т.е. к солям относятся такие соединения, как, например, (NH 4) 2 SO 4 (сульфат аммония), + Cl — (хлорид метиламмония) и т.д.

Также противоречат определению солей выше класс так называемых комплексных солей, которые будут рассмотрены в конце данной темы.

Классификация солей

С другой стороны, соли можно рассматривать как продукты замещения катионов водорода H + в кислоте на другие катионы или же как продукты замещения гидроксид-ионов в основаниях (или амфотерных гидроксидах) на другие анионы.

При полном замещении образуются так называемые средние или нормальные соли. Например, при полном замещении катионов водорода в серной кислоте на катионы натрия образуется средняя (нормальная) соль Na 2 SO 4 , а при полном замещении гидроксид-ионов в основании Ca(OH) 2 на кислотные остатки нитрат-ионы образуется средняя (нормальная) соль Ca(NO 3) 2 .

Соли, получаемые неполным замещением катионов водорода в двухосновной (или более) кислоте на катионы металла, называют кислыми. Так, при неполном замещении катионов водорода в серной кислоте на катионы натрия образуется кислая соль NaHSO 4 .

Соли, которые образуются при неполном замещении гидроксид-ионов в двухкислотных (или более) основаниях, называют осно вными солями. Например, при неполном замещении гидроксид-ионов в основании Ca(OH) 2 на нитрат-ионы образуется осно вная соль Ca(OH)NO 3 .

Соли, состоящие из катионов двух разных металлов и анионов кислотных остатков только одной кислоты, называют двойными солями . Так, например, двойными солями являются KNaCO 3 , KMgCl 3 и т.д.

Если соль образована одним типом катионов и двумя типами кислотных остатков, такие соли называют смешанными. Например, смешанными солями являются соединения Ca(OCl)Cl, CuBrCl и т.д.

Существуют соли, которые не попадают под определение солей как продуктов замещения катионов водорода в кислотах на катионы металлов или продуктов замещения гидроксид-ионов в основаниях на анионы кислотных остатков. Это — комплексные соли. Так, например, комплексными солями являются тетрагидроксоцинкат- и тетрагидроксоалюминат натрия с формулами Na 2 и Na соответственно. Распознать комплексные соли среди прочих чаще всего можно по наличию квадратных скобок в формуле. Однако нужно понимать, что, чтобы вещество можно было отнести к классу солей, в его состав должны входить какие-либо катионы, кроме (или вместо) H + , а из анионов должны быть какие-либо анионы помимо (или вместо) OH — . Так, например, соединение H 2 не относится к классу комплексных солей, поскольку при его диссоциации из катионов в растворе присутствуют только катионы водорода H + . По типу диссоциации данное вещество следует скорее классифицировать как бескислородную комплексную кислоту. Аналогично, к солям не относится соединение OH, т.к. данное соединение состоит из катионов + и гидроксид-ионов OH — , т.е. его следует считать комплексным основанием.

Номенклатура солей

Номенклатура средних и кислых солей

Название средних и кислых солей строится по принципу:

Если степень окисления металла в сложных веществах постоянная, то ее не указывают.

Названия кислотных остатков были даны выше при рассмотрении номенклатуры кислот.

Например,

Na 2 SO 4 — сульфат натрия;

NaHSO 4 — гидросульфат натрия;

CaCO 3 — карбонат кальция;

Ca(HCO 3) 2 — гидрокарбонат кальция и т.д.

Номенклатура основных солей

Названия основных солей строятся по принципу:

Например:

(CuOH) 2 CO 3 — гидроксокарбонат меди (II);

Fe(OH) 2 NO 3 — дигидроксонитрат железа (III).

Номенклатура комплексных солей

Номенклатура комплексных соединений значительно сложнее, и для сдачи ЕГЭ многого знать из номенклатуры комплексных солей не нужно.

Следует уметь называть комплексные соли, получаемые взаимодействием растворов щелочей с амфотерными гидроксидами. Например:

*Одинаковыми цветами в формуле и названии обозначены соответствующие друг другу элементы формулы и названия.

Тривиальные названия неорганических веществ

Под тривиальными названиями понимают названия веществ не связанные, либо слабо связанные с их составом и строением. Тривиальные названия обусловлены, как правило, либо историческими причинами либо физическими или химическими свойствами данных соединений.

Список тривиальных названий неорганических веществ, которые необходимо знать:

Na 3 криолит
SiO 2 кварц, кремнезем
FeS 2 пирит, железный колчедан
CaSO 4 ∙2H 2 O гипс
CaC2 карбид кальция
Al 4 C 3 карбид алюминия
KOH едкое кали
NaOH едкий натр, каустическая сода
H 2 O 2 перекись водорода
CuSO 4 ∙5H 2 O медный купорос
NH 4 Cl нашатырь
CaCO 3 мел, мрамор, известняк
N 2 O веселящий газ
NO 2 бурый газ
NaHCO 3 пищевая (питьевая) сода
Fe 3 O 4 железная окалина
NH 3 ∙H 2 O (NH 4 OH) нашатырный спирт
CO угарный газ
CO 2 углекислый газ
SiC карборунд (карбид кремния)
PH 3 фосфин
NH 3 аммиак
KClO 3 бертолетова соль (хлорат калия)
(CuOH) 2 CO 3 малахит
CaO негашеная известь
Ca(OH) 2 гашеная известь
прозрачный водный раствор Ca(OH) 2 известковая вода
взвесь твердого Ca(OH) 2 в его водном растворе известковое молоко
K 2 CO 3 поташ
Na 2 CO 3 кальцинированная сода
Na 2 CO 3 ∙10H 2 O кристаллическая сода
MgO жженая магнезия

Оксиды – соединения элементов с кислородом, степень окисления кислорода в оксидах всегда равна -2.

Оснóвные оксиды образуют типичные металлы со С.О. +1,+2 (Li 2 O, MgO, СаО,CuO и др.).

Кислотные оксиды образуют неметаллы со С.О. более +2 и металлы со С.О. от +5 до +7 (SO 2 , SeO 2 , Р 2 O 5 , As 2 O 3 , СO 2 ,SiO 2 , CrO 3 и Mn 2 O 7). Исключение: у оксидов NO 2 и ClO 2 нет соответствующих кислотных гидроксидов, но их считают кислотными.

Амфотерные оксиды образованы амфотерными металлами со С.О. +2,+3,+4 (BeO, Cr 2 O 3 , ZnO, Al 2 O 3 , GeO 2 , SnO 2 и РЬО).

Несолеобразующие оксиды – оксиды неметаллов со С.О.+1,+2 (СО, NO, N 2 O, SiO).

Основания (осно́вные гидрокси́ды ) - сложные вещества, которые состоят из иона металла (или иона аммония) и гидроксогруппы (-OH).

Кислотные гидроксиды (кислоты) — сложные вещества, которые состоят из атомов водорода и кислотного остатка.

Амфотерные гидроксиды образованы элементами с амфотерными свойствами.

Соли – сложные вещества, образованные атомами металлов, соединёнными с кислотными остатками.

Средние (нормальные) соли - все атомы водорода в молекулах кислоты замещены на атомы металла.

Кислые соли - атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Чтобы правильно назвать кислую соль, необходимо к названию нормальной соли прибавить приставку гидро- или дигидро- в зависимости от числа атомов водорода, входящих в состав кислой соли.

Например, KHCO 3 – гидрокарбонат калия, КH 2 PO 4 – дигидроортофосфат калия

Нужно помнить, что кислые соли могут образовывать только двух и более основные кислоты.

Осно́вные соли - гидроксогруппы основания (OH −) частично замещены кислотными остатками. Чтобы назвать основную соль, необходимо к названию нормальной соли прибавить приставку гидроксо- или дигидроксо- в зависимости от числа ОН — групп, входящих в состав соли.

Например, (CuOH) 2 CO 3 — гидроксокарбонат меди (II).

Нужно помнить, что основные соли способны образовывать лишь основания, содержащие в своём составе две и более гидроксогрупп.

Двойные соли - в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами. Например,KAl(SO 4) 2 , KNaSO 4.

Смешанные соли - в их составе присутствует два различных аниона. Например, Ca(OCl)Cl.

Гидратные соли (кристаллогидраты ) - в их состав входят молекулы кристаллизационной воды. Пример: Na 2 SO 4 ·10H 2 O.

Тривиальные названия часто употребляемых неорганических веществ:

Формула Тривиальное название
NaCl галит, каменная соль, поваренная соль
Na 2 SO 4 *10H 2 O глауберова соль
NaNO 3 Натриевая, чилийская селитра
NaOH едкий натр, каустик, каустическая сода
Na 2 CO 3 *10H 2 O кристаллическая сода
Na 2 CO 3 Кальцинированная сода
NaHCO 3 пищевая (питьевая) сода
K 2 CO 3 поташ
КОН едкое кали
KCl калийная соль, сильвин
KClO 3 бертолетова соль
KNO 3 Калийная, индийская селитра
K 3 красная кровяная соль
K 4 желтая кровяная соль
KFe 3+ берлинская лазурь
KFe 2+ турнбулева синь
NH 4 Cl Нашатырь
NH 3 *H 2 O нашатырный спирт, аммиачная вода
(NH 4) 2 Fe(SO 4) 2 соль Мора
СаO негашеная (жженая) известь
Са(OH) 2 гашеная известь, известковая вода, известковое молоко, известковое тесто
СaSO 4 *2H 2 O Гипс
CaCO 3 мрамор, известняк, мел, кальцит
СаНРO 4 × 2H 2 O Преципитат
Са(Н 2 РO 4) 2 двойной суперфосфат
Са(Н 2 РO 4) 2 +2СаSO 4 простой суперфосфат
CaOCl 2 (Ca(OCl) 2 + CaCl 2) хлорная известь
MgO жженая магнезия
MgSO 4 *7H 2 O английская (горькая) соль
Al 2 O 3 корунд, боксит, глинозем, рубин, сапфир
C алмаз, графит, сажа, уголь, кокс
AgNO 3 ляпис
(CuОН) 2 СO 3 малахит
Cu 2 S медный блеск, халькозин
CuSO 4 *5H 2 O медный купорос
FeSO 4 *7H 2 O железный купорос
FeS 2 пирит, железный колчедан, серный колчедан
FeСО 3 сидерит
Fe 2 О 3 красный железняк, гематит
Fe 3 О 4 магнитный железняк, магнетит
FeО × nH 2 О бурый железняк, лимонит
H 2 SO 4 × nSO 3 олеум раствор SO 3 в H 2 SO 4
N 2 O веселящий газ
NO 2 бурый газ, лисий хвост
SO 3 серный газ, серный ангидрид
SO 2 сернистый газ, сернистый ангидрид
CO угарный газ
CO 2 углекислый газ, сухой лед, углекислота
SiO 2 кремнезем, кварц, речной песок
CO + H 2 водяной газ, синтез-газ
Pb(CH 3 COO) 2 свинцовый сахар
PbS свинцовый блеск, галенит
ZnS цинковая обманка, сфалерит
HgCl 2 сулема
HgS киноварь