Электрический скат и электрический угорь. Рыба, которая бьет током

Из всех позвоночных только рыбы в состоянии произвести достаточное количество электрической энергии, чтобы парализовать или даже убить человека. Электрические органы служат рыбам для обороны, ориентации, охоты и, возможно, коммуникации. Электрическую энергию способны вырабатывать около двухсот пятидесяти видов рыб; однако заряд такой силы, что он может служить оружием против человека, накапливают лишь электрические угри (Electrophorus electricus ), обитающие в Южной Америке, и электрические скаты, принадлежащие к семейству Torpedinidae .

Каким образом животные генерируют такие мощные импульсы электрической энергии, остается для ученых загадкой, однако природа животного электричества вполне понятна. Электрическая энергия возникает в теле любого животного - в том числе и человека. Электрические импульсы бегут по нервным волокнам и подают клеткам мозга, а также другим клеткам сигналы о различных явлениях. Даже чтение этих страниц, читатель, приводит к возникновению электрических сигналов; но у электрических угрей и некоторых скатов энергии накапливается так много, что она используется в качестве оружия против других рыб и животных. Рассмотрим, как она образуется.


О том, что ткани животных генерируют электричество, человечество узнало в 1791 году, когда Луиджи Гальвани, профессор анатомии в Болонском университете, обнаружил, что нервная и мышечная ткани ноги лягушки реагируют на электрический ток. Со временем ученые выяснили, что импульсы, рассылающие сигналы по нервной системе человека, имеют электрохимическую природу. Упрощая картину, можно сказать, что нервные сигналы - это движение ионов, то есть заряженных частиц, сквозь оболочки нервных клеток. В состоянии покоя или бездействия клетки ее оболочка имеет отрицательный потенциал, так как изнутри клетки скапливаются отрицательно заряженные ионы; однако снаружи клетки находятся и положительные, и отрицательные ионы, и среди них - ионы натрия, несущие положительный заряд. Когда нервная клетка посылает сигнал, оболочка ее меняет полярность, и ионы натрия проникают сквозь нее в клетку, меняя ее потенциал на положительный.

Придя в обычное состояние, клетка избавляется от ионов натрия при помощи механизма, "устройство" которого неизвестно; ученые называют его "натриевым насосом", потому что он словно выкачивает из клетки ионы натрия.

Когда клетка передает сигнал, "насос" перестает действовать. Ионы натрия и калия притягиваются друг к другу, обмениваясь зарядами и нейтрализуя электрический потенциал клетки. Крошечные разряды поднимаются по нервному волокну, отходящему от клетки, возбуждая электрическое поле в окружающей ткани и жидкости. Сигнал, или нервный импульс, перемещается по нервному волокну до тех пор, пока не достигнет точки, где оно разветвляется на отростки, называемые нервными окончаниями. Окончания пронизывают пространство, отделяющее одну нервную клетку от другой. Это пространство между двумя соседними клетками нервной ткани называется синапсом.


Электрические рыбы обитают и в морях, и в пресных водоемах. Среди животных нашей планеты самый мощный электрический разряд создает электрический угорь (верхний снимок); своим разрядом он способен парализовать лошадь. Электрический скат (нижний снимок), "обняв" свою жертву плавниками, тоже парализует ее электрическим разрядом

В какой-то момент нервный импульс, направляющийся к мышце, достигает синапса, на противоположной стороне которого находится клетка мышечного волокна. Эта точка, называемая нервно-мышечным соединением, играет решающую роль в генерировании электричества у рыб. При появлении нервного импульса в нервно-мышечном соединении вокруг нервных окончаний выделяется химическое вещество, называемое ацетилхолином. Просачиваясь от нервной клетки к мышечной, ацетилхолин передает импульс мышечному волокну, деполяризуя его и вызывая тем самым электрический разряд. Предполагается также, что еще одной функцией ацетилхолина является прекращение действия "натриевого насоса" в клетке, что позволяет ионам проникать сквозь оболочку клетки.

Обычно электрический сигнал заставляет мышцу сокращаться, что и проявляется в различных движениях тела животного. Однако некоторые мышцы у рыб потеряли способность сокращаться. Нервные окончания, идущие к этим мышцам, залегают в районе нервно-мышечных соединений очень густо, а волокна мышечных клеток настолько разрастаются, что образуют нечто вроде живого электрода.

Электрические органы таких рыб, как электрический угорь и электрические скаты, состоят из нескольких подобных "электродов". Когда все они разряжаются, возникает электрический ток большой мощности. Управляет разрядом пучок нервов, который у электрического угря отходит от спинного мозга, а у электрического ската - от головного.

Электрические скаты, обитающие и в умеренной, и в тропической зонах, способны создать на своих "электродах" напряжение до 50 вольт и выше; этого достаточно, чтобы убивать рыб и ракообразных, которыми питаются скаты. Электрический скат похож на гибкий блин с длинным и толстым хвостом. Охотясь, скат бросается на жертву всем телом и "обнимает" ее своими "крыльями", на концах которых находятся электрические органы. Объятие смыкается, "электроды" разряжаются - и скат убивает свою жертву разрядом тока.

Самый крупный из электрических скатов - это Torpedo nobiliana , обитатель вод Северной Атлантики; в длину он достигает 1,8 метра, весит около 100 килограммов и способен создавать разность потенциалов в 200 вольт - этого достаточно, чтобы убить любое животное, оказавшееся в воде поблизости. Особая действенность электрического разряда в воде объясняется тем, что вода - хороший проводник электрического тока.

Электрический скат упоминается во многих легендах, дошедших до нас из глубины веков; толкователи снов считали, что он предвещает близкое несчастье. Греки и римляне знали, что скат владеет источником какой-то странной энергии, и, поскольку электричество тогда не было известно, полагали, что источник ее - какое-то неведомое вещество. Существовало и еще одно поверье - будто скат, пойманный на бронзовый крючок, убивает забросившего снасть рыбака, причем смерть наступает от свертывания крови.

В старину скатов использовали для лечения посредством шока. Лекари помещали небольших скатов на головы пациентов, страдающих головными болями и другими недугами; считалось, что скат обладает целебными свойствами.

Электрический угорь, генерирующий разряд тока напряжением 650 вольт - а это в несколько раз больше того напряжения, которое способен создать даже самый крупный из скатов, - вполне может убить находящегося поблизости в воде человека. Электрический угорь имеет мало общего с прочими угрями; он состоит в родстве с рыбой-ножом и обитает в реках. Электрический угорь достигает в длину 2,7 метра, а в толщину - около 10 сантиметров. Четыре пятых его тела занимают три электрических органа, и лишь одна пятая его длины приходится на другие органы, выполняющие такие важные жизненные функции, как дыхание, пищеварение, размножение и прочие.

Воды, в которых живет электрический угорь, бывают бедны кислородом, но угря это не смущает: он научился дышать также и атмосферным кислородом. Многочисленные кровеносные сосуды в его пасти способны усваивать кислород, и угорь захватывает воздух, поднимаясь к поверхности воды.

Молодой электрический угорь видит хорошо, но с возрастом его зрение резко ухудшается. Это не особенно смущает угря, ибо в темной, мутной воде, где он обычно обитает, от глаз все равно толку мало. Искать добычу угрю помогают все те же электрические органы: он испускает сравнительно слабые электрические импульсы, напряжение которых не превышает 40 - 50 вольт; эти низковольтные разряды помогают ему находить мелких морских обитателей, которыми угорь питается. Кроме того, электрические угри, вероятно, способны воспринимать электрические разряды друг друга - во всяком случае, когда один из них ударом электрического тока парализует жертву, к добыче устремляются и другие угри.

Электрические угри хорошо привыкают к жизни в неволе, и их часто можно видеть в аквариумах; обычно аквариум оборудуют каким-нибудь электрическим прибором для демонстрации уникальных способностей угря, например лампой, к которой ведут провода от двух опущенных в воду электродов. Когда в аквариум бросают кусочки корма или мелких рыбешек, лампа загорается, потому что, почуяв добычу, угорь начинает генерировать в воде электрические разряды. Аквариум можно оборудовать и звукоусилителями, и тогда посетители услышат статические шумы, сопровождающие разряды тока, генерируемые угрем.

Обращение с электрическим угрем - дело довольно опасное. В Лондонском зоопарке угорь однажды сильно ударил электрическим током служителя, который его кормил. Другой угорь начал генерировать электрические разряды, когда его переносили в металлической коробке, и служителю пришлось бросить коробку на землю. Но только при непосредственном контакте удар угря оказывается смертельным; однако пловец, оказавшийся в воде недалеко от места разряда, может утонуть, находясь в состоянии шока.

Способность угря генерировать огромные количества электроэнергии уже более столетия привлекает внимание биологов и медиков. Во время второй мировой войны ею заинтересовались я военные, в том числе и американские: через два года после вступления Соединенных Штатов в войну, в Нью-Йорк были доставлены двести электрических угрей, пойманных в Южной Америке. В зоопарке в Бронксе для них устроили двадцать два деревянных бассейна. Угрей использовали в экспериментах по изучению действия нервно-паралитических газов, которые блокируют передачу нервных импульсов и таким образом могут приостанавливать работу сердца, легких и других жизненно важных органов. Сущность действия газов состоит в том, что они препятствуют расщеплению ацетилхолина после того, как он останавливает "натриевый насос" нервной клетки. Обычно в организме ацетилхолин расщепляется сразу же после того, как выполнит свою функцию; процесс расщепления управляется ферментом, который называется холинэстераза. Нервнопаралитические газы как раз и препятствуют действию этого фермента.

Электрические органы угря содержат большое количество холинэстеразы, которая отличается к тому же высокой активностью; потому-то военным специалистам и понадобились электрические угри, привезенные в зоопарк в Бронксе: они служили источником фермента, нужного для изучения нервно-паралитического действия отравляющих газов. Большинство работников зоопарка лишь после войны узнали, зачем в подвалах львиного вольера держали такое количество электрических угрей.

Рыбы составляют меньшую часть обитателей Мирового океана; гораздо большую часть его обитателей составляют беспозвоночные, и именно среди них имеются и самые миниатюрные и безобидные водные животные, и самые громадные и опасные.

В приключенческих фильмах и романах, действие которых происходит в морях южного полушария, часто появляется гигантский моллюск Tridacna gigas , изображаемый этакой живой ловушкой, капканом, поджидающим неосторожного пловца. На самом деле этот гигант питается планктоном и вовсе не обладает той огромной силой, которую ему обычно приписывают, - даже если размеры его раковины действительно достигают 1,2 метра, а вес самого моллюска 220 килограммов. Нет ни одного документированного случая смерти человека от столкновения с Tridacna gigas , однако даже такие авторитетные источники, как издаваемый американским военно-морским флотом журнал "Наука о море", предупреждают читателя об опасности, которую представляет для аквалангиста этот моллюск. Однако маловероятно, что моллюск, случайно сомкнувший свои створки вокруг человеческой ноги, станет удерживать ее; скорее, он постарается отделаться от неудобной добычи.

Из всех позвоночных только рыбы в состоянии произвести доста­точное количество электрической энергии, чтобы парализовать или даже убить человека. Электрические органы служат рыбам для обороны, ориентации, охоты и, возможно, коммуникации. Электрическую энергию способны вырабатывать около двухсот пятидесяти видов рыб; однако заряд такой силы, что он может служить оружием против человека, накапливают лишь электрические угри (Electrophorus electricus ), обитающие в Южной Америке и электрические скаты, принадлежащие к семейству Тоrpedinidae .

Каким образом животные генерируют такие мощные импульсы электрической энергии, остается для учёных загадкой, однако природа животного электричества вполне понятна. Электрическая энергия возникает в теле любого животного - в том числе человека. Электрические импульсы бегут по нервным волокнам и подают клеткам мозга, а также другим клеткам сигналы о различных явлениях. Даже чтение этих страниц, читатель, приводит к возникновению электрических сигналов; но у электрических угрей и некоторых скатов энергии накапливается так много, что она используется в качестве оружия против других рыб и животных. Рассмотрим, как она образуется.

О том, что ткани животных генерируют электричество, человечество узнало в 1791 году, когда Луиджи Гальвани, профессор анатомии в Болонском университете, обнаружил, что нервная и мышечная ткани ноги лягушки реагируют на электрический ток. Со временем ученые выяснили, что импульсы, рассылающие сигналы по нервной системе человека, имеют электрохимическую природу. Упрощая картину, можно сказать, что нервные сигналы - это движение ионов, то есть заряженных частиц сквозь оболочки нервных клеток. В состоянии покоя или бездействия клетки ее оболочка имеет отрицательный потенциал, так как изнутри клетки скапливаются отрицательно заряженные ионы; однако снаружи клетки находятся и положительные, и отрицательные ионы, и среди них - ионы натрия, несущие положительный заряд. Когда нервная клетка посылает сигнал, оболочка её меняет полярность, и ионы натрия проникают сквозь нее в клетку, меняя ее потенциал на положительный. Придя в обычное состояние, клетка избавляется от ионов натрия при помощи механизма, "устройство" которого неизвестно; ученые называют его "натриевым насосом", потому что он словно выкачивает из клетки ионы натрия.

Когда клетка передает сигнал, "насос" перестает действовать. Ионы натрия и калия притягиваются друг к другу, обмениваясь зарядами и нейтрализуя электрический потенциал клетки. Крошечные разряды поднимаются по нервному волокну, отходящему от клетки, возбуждая электрическое поле в окружающей ткани и жидкости. Сигнал, или нервный импульс, перемещается по нервному волокну до тех пор, пока не достигнет точки, где оно разветвляется на отростки, называемые нервными окончаниями. Окончания пронизывают пространство, отделяющее одну нервную клетку от другой. Это пространство между двумя соседними клетками нервной ткани называется синапсом.

B какой-то момент нервный импульс, направляющийся к мышце, достигает синапса, на противоположной стороне которого на­ходится клетка мышечного волокна. Эта точка, называемая нервно-мышечным соединением играет решающую роль в генериро­вании электричества у рыб. При появлении нервного импульса в нервно-мышечном соединении вокруг нервных окончаний выде­ляется химическое вещество, называемое ацетилхолином. Проса­чиваясь от нервной клетки к мышечной, ацетилхолин передает импульс мышечному волокну, деполяризуя его и вызывая тем самым электрический разряд. Предполагается также, что еще одной функцией ацетилхолина является прекращение действия "натриевого насоса" в клетке, что позволяет ионам проникать сквозь оболочку клетки.

Обычно электрический сигнал заставляет мышцу сокращать­ся, что и проявляется в различных движениях тела животного. Однако некоторые мышцы у рыб потеряли способность сокра­щаться. Нервные окончания, идущие к этим мышцам, залегают в районе нервно-мышечных соединений очень густо, а волокна мышечных клеток настолько разрастаются, что образуют нечто вроде живого электрода.

Электрические органы таких рыб, как электрический угорь и электрические скаты, состоят из нескольких подобных "электро­дов". Когда все они разряжаются, возникает электрический ток большой мощности. Управляет разрядом пучок нервов, который у электрического угря отходит от спинного мозга, а у электрического ската - от головного.

Электрические скаты, обитающие и в умеренной, и в тропиче­ской зонах, способны создать на своих "электродах" напряжение до 50 вольт и выше; этого достаточно, чтобы убивать рыб и ракообразных, которыми питаются скаты. Электрический скат похож на гибкий блин с длинным и толстым хвостом. Охотясь, скат бросается на жертву всем телом и "обнимает" ее своими "крыльями", на концах которых находятся электрические орга­ны. Объятие смыкается, "электроды" разряжаются - и скат убивает свою жертву разрядом тока.

Самый крупный из электрических скатов - это Torpedo nоbiliana , обитатель вод Северной Атлантики; в длину он достига­ет 1,8 метра, весит около 100 килограммов и способен создавать разность потенциалов в 200 вольт - этого достаточно, чтобы убить любое животное, оказавшееся в воде поблизости. Особая действенность электрического разряда в воде объясняется тем, что вода - хороший проводник электрического тока.

Электрический скат упоминается во многих легендах, дошед­ших до нас из глубины веков; толкователи снов считали, что он предвещает близкое несчастье. Греки и римляне знали, что скат владеет источником какой-то странной энергии, и, поскольку электричество тогда не было известно, полагали, что источник ее - какое-то неведомое вещество. Существовало и еще одно поверье - будто скат, пойманный на бронзовый крючок, убивает забросившего снасть рыбака, причем смерть наступает от свертывания крови.

В старину скатов использовали для лечения посредством шока. Лекари помещали небольших скатов на головы пациентов, стра­дающих головными болями и другими недугами; считалось, что скат обладает целебными свойствами.

Электрический угорь, генерирующий разряд тока напряжени­ем 650 вольт - а это в несколько раз больше того напряжения, которое способен создать даже самый крупный из скатов, - впол­не может убить находящегося поблизости в воде человека. Элект­рический угорь имеет мало общего с прочими угрями; он состоит в родстве с рыбой-ножом и обитает в реках. Электрический угорь достигает в длину 2,7 метра, а в толщину - около 10 сантимет­ров. Четыре пятых его тела занимают три электрических органа, и лишь одна пятая его длины приходится на другие органы, вы­полняющие такие важные жизненные функции, как дыхание, пи­щеварение, размножение и прочие.

Воды, в которых живет электрический угорь, бывают бедны кислородом, но угря это не смущает: он научился дышать также и атмосферным кислородом. Многочисленные кровеносные сосу­ды в его пасти способны усваивать кислород, и угорь захваты­вает воздух, поднимаясь к поверхности воды.

Молодой электрический угорь видит хорошо, но с возрастом его зрение резко ухудшается. Это не особенно смущает угря, ибо в темной, мутной воде, где он обычно обитает, от глаз все равно толку мало. Искать добычу угрю помогают все те же электриче­ские органы: он испускает сравнительно слабые электрические импульсы, напряжение которых не превышает 40 - 50 вольт; эти низковольтные разряды помогают ему находить мелких морских обитателей, которыми угорь питается. Кроме того, электрические угри, вероятно, способны воспринимать электрические разряды друг друга - во всяком случае, когда один из них ударом элект­рического тока парализует жертву, к добыче устремляются и другие угри.

Электрические угри хорошо привыкают к жизни в неволе, и их часто можно видеть в аквариумах; обычно аквариум оборуду­ют каким-нибудь электрическим прибором для демонстрации уникальных способностей угря, например лампой, к которой ве­дут провода от двух опущенных в воду электродов. Когда в аква­риум бросают кусочки корма или мелких рыбешек, лампа заго­рается, потому что, почуяв добычу, угорь начинает генерировать в воде электрические разряды. Аквариум можно оборудовать и звукоусилителями, и тогда посетители услышат статические шумы, сопровождающие разряды тока, генерируемые угрем.

Обращение с электрическим угрем - дело довольно опасное. В Лондонском зоопарке угорь однажды сильно ударил электрическим током служителя, который его кормил. Другой угорь на­чал генерировать электрические разряды, когда его переносили в металлической коробке, и служителю пришлось бросить короб­ку на землю. Но только при непосредственном контакте удар угря оказывается смертельным; однако пловец, оказавшийся в воде недалеко от места разряда, может утонуть, находясь в состоянии шока.

Способность угря генерировать огромные количества электро­энергии уже более столетия привлекает внимание биологов и ме­диков. Во время второй мировой войны ею заинтересовались и военные, в том числе и американские: через два года после вступления Соединенных Штатов в войну, в Нью-Йорк были доставлены двести электрических угрей, пойманных в Южной Америке. В зоопарке в Бронксе для них устроили двадцать два деревянных бассейна. Угрей использовали в экспериментах по изучению действия нервно-паралитических газов, которые блоки­руют передачу нервных импульсов, и таким образом могут приостанавливать работу сердца, легких и других жизненно важных органов. Сущность действия газов состоит в том, что они препят­ствуют расщеплению ацетилхолина после того, как он останав­ливает "натриевый насос" нервной клетки. Обычно в организме ацетилхолин расщепляется сразу же после того, как выполнит свою функцию; процесс расщепления управляется ферментом, который называется холинэстераза. Нервно-паралитические газы как раз и препятствуют действию этого фермента.

Электрические органы угря содержат большое количество холинэстеразы, которая отличается к тому же высокой актив­ностью; потому-то военным специалистам и понадобились электрические угри, привезенные в зоопарк в Бронксе: они служили источником фермента, нужного для изучения нервно-паралити­ческого действия отравляющих газов. Большинство работников зоопарка лишь после войны узнали, зачем в подвалах львиного вольера держали такое количество электрических угрей.

Рыбы составляют меньшую часть обитателей Мирового океа­на; гораздо большую часть его обитателей составляют беспозво­ночные, и именно среди них имеются и самые миниатюрные и безобидные водные животные, и самые громадные и опасные.

В приключенческих фильмах и романах, действие которых происходит в морях южного полушария, часто появляется гигантский моллюск Tridacna gigas , изображаемый этакой живой ловушкой, капканом, поджидающим неосторожного пловца. На самом деле этот гигант питается планктоном и вовсе не обладает той огромной силой, которую ему обычно приписывают, - даже если размеры его раковины действительно достигают 1,2 метра, а вес самого моллюска 220 килограммов. Нет ни одного документированного случая смерти человека от столкновения с Tridacna gigas , однако даже такие авторитетные источники, как издава­емый американским военно-морским флотом журнал "Наука о море", предупреждают читателя об опасности, которую пред­ставляет для аквалангиста этот моллюск. Однако маловероятно, что моллюск, случайно сомкнувший свои створки вокруг человеческой ноги, станет удерживать ее; скорее, он постарается отде­латься от неудобной добычи.

Электрические рыбы . Люди ещё в глубокой древности обратили внимание, что некоторые рыбы как-то по особенному добывают себе пищу. И лишь совсем недавно, по историческим меркам, стало понятно, как они это делают. Оказывается есть такие рыбы, которые создают электрический разряд. Этот разряд парализует или убивает других рыб и даже совсем не маленьких животных.

Плывёт такая рыбина, плывёт никуда не торопясь. Как только недалеко от неё оказывается другая рыба, создаётся электрический разряд. Всё, обед готов. Можно подплывать и заглатывать парализованную или убитую электрическим током рыбу.

Как же это получается у рыб создавать электрический импульс? Дело в том, что в организме таких рыб имеются самые настоящие батарейки. Их количество и размеры у рыб разные, но принцип действия один и тот же. Именно по такому же принципу устроены современные аккумуляторные батарейки.

Собственно, современные батареи и созданы по образцу и подобию рыбных. Два электрода, между ними электролит. Этот принцип был однажды подсмотрен у электрического ската. много ещё интересных неожиданностей таит природа матушка!

Сегодня в мире насчитывается более трёхсот видов электрических рыб. Они имеют самые разные размеры и вес. Всех их объединяет способность создавать электрический разряд или даже целую серию разрядов. Но всё же считается, что самыми мощными электрическими рыбами являются скаты, сомы и угри.

Электрические скаты имеют плоскую голову и тело. Голова чаще в форме диска. Они имеют небольшой хвост с плавником. Электрические органы расположены по бокам головы. Ещё пара небольших электрических органов расположены на хвосте. Они есть даже у тех скатов, которые не относятся к электрическим.

Электрические скаты могут вырабатывать электрический импульс напряжением до четырёхсот пятидесяти вольт. Этим импульсом они могут не только обездвиживать, но и убивать небольших рыб. Человеку, если он попадёт в зону действия импульса, тоже мало не покажется. Но человек, скорее всего останется жив, хотя наверняка испытает неприятные в своей жизни моменты.

Электрические сомы , так же как и скаты, создают электрический импульс. Его напряжение может быть у крупных сомов, так же как и у скатов, до 450 вольт. При поимке такого сомика, так же можно получить весьма ощутимый удар током. Электрические сомы обитают в водоёмах Африки и достигают размеров до 1 метра. Их вес может быть до 23 килограммов.

Но, самая опасная рыба обитает в водоёмах Южной Америки. Это электрические угри . Они бывают очень немаленьких размеров. Взрослые особи достигают в длину трёх метров и веса до двадцати килограммов. Эти электрические гиганты могут создавать электрический импульс напряжением до одной тысячи двухсот вольт.

Импульсом с таким напряжением они могут убить и довольно крупных животных, оказавшихся некстати рядом. Такой же исход может ожидать и человека. Мощность электрического разряда достигает шести киловатт. Мало не покажется. Вот такие они — живые электростанции.

Разность потенциалов на концах электрических органов может достигать 1200 вольт, а мощность разряда в импульсе — от 1 до 6 киловатт. Частота импульсов зависит от их назначения. Например, электрический скат испускает 10—12 импульсов, когда защищается, и от 14 до 562, когда нападает. Мощность напряжения в разряде у разных рыб колеблется от 20 до 600 вольт. Среди морских рыб самый «сильный» электрический орган у ската Torpedo maromata — он может генерировать разряд более 200 вольт. Электричество защищает его и от акул, и от осьминогов, а также позволяет охотиться на мелких рыб.

У пресноводных рыб разряды еще мощнее. Дело в том, что соленая вода лучше проводит электричество, чем пресная. Поэтому морским рыбам, чтобы оглушить противника, требуется меньше энергии. Одна из самых опасных пресноводных рыб — это электрический угорь из Амазонки. На его теле три электрических органа. Два из них для навигации и поиска добычи, а третий представляет собой мощнейшее оружие с напряжением более 500 вольт. Электрический удар такой силы не только убивает рыбу и лягушек, но даже может нанести серьезный вред человеку. Поэтому ловить амазонских угрей очень опасно. Для этого в реку загоняют стадо коров, чтобы угри истратили на них весь свой заряд. Только после этого люди заходят в воду.

Некоторые рыбы используют электричество для навигации. Например, нильский слоник или рыба-нож создают вокруг себя электромагнитное поле. Когда в него попадает посторонний объект, рыба сразу это чувствует. Такая навигационная система напоминает эхолокацию летучих мышей. Она позволяет хорошо ориентироваться в мутной воде. Как показали исследования, многие электрические рыбы настолько чувствительны к изменению электромагнитных полей, что способны «предвидеть» приближающееся землетрясение.