Двигатель в качестве генератора. Асинхронный генератор.Генератор из асинхронного двигателя


За основу был взят промышленный асинхронный двигатель переменного тока, мощностью 1,5 кВт с частотой вращения вала 960 об/мин. Сам по себе такой мотор изначально не может работать как генератор. Ему необходима доработка, а именно замена или доработка ротора.
Табличка с маркировкой двигателя:


Двигатель хорош тем, что у него везде где нужно стоят уплотнения, особенно у подшипников. Это существенно увеличивает интервал между периодическими техническими обслуживаниями, так как пыль и грязь никуда просто так попасть и проникнуть не могут.
Ламы у этого электродвигателя можно поставить на любую сторону, что очень удобно.

Переделка асинхронного двигателя в генератор

Снимаем крышки, извлекаем ротор.
Обмотки статора остаются родные, двигатель не перематывается, все остается как есть, без изменений.


Ротор дорабатывался на заказ. Было решено сделать его не цельнометаллическим, а сборным.


То есть, родной ротор стачивается до определенного размера.
Вытачивается стальной стакан и запрессовывается на ротор. Толщина скана в моем случае 5 мм.


Разметка мест для приклеивания магнитов была одной из самых сложных операций. В итоге методом проб и ошибок было решено распечатать шаблон на бумаге, вырезать в нем кружочки под неодимовые магниты – они круглые. И приклеить магниты по шаблону на ротор.
Основная загвоздка возникла в вырезании множественных кружочков в бумаге.
Все размеры подбираются сугубо индивидуально под каждый двигатель. Каких-то общих размеров размещения магнитов дать нельзя.


Неодимовые магниты приклеены на супер клей.


Была сделана сетка из капроновой нити для укрепления.


Далее обматывается все скотчем, снизу делается герметичная опалубка, герметизированная пластилином, а сверху заливная воронка из того же скотча. Заливается все эпоксидной смолой.


Смола потихоньку стекает сверху вниз.


После застывания эпоксидной смолы, снимаем скотч.



Теперь все готов к сборке генератора.


Загоняем ротор в статор. Делать это нужно особо осторожно, так как неодимовые магниты обладают огромной силой и ротор буквально залетает в статор.


Собираем, закрываем крышки.


Магниты не задевают. Залипания почти нет, крутится относительно легко.
Проверка работы. Вращаем генератор от дрели, с частотой вращения 1300 об/мин.
Двигатель подключен звездой, треугольником генераторы такого типа подключать нельзя, не будут работать.
Снимается напряжение для проверки между фазами.


Генератор из асинхронного двигателя работает отлично.Более подробную информацию смотрите в видеоролике.

Канал автора -

(АГ) является наиболее распространенной электрической машиной переменного тока, применяемой преимуществен­но в качестве двигателя.
Только низковольтные АГ (до 500 В пи­тающего напряжения) мощностью от 0,12 до 400 кВт потребляют более 40% всей вырабатываемой в мире электроэнергии, а годовой их выпуск со­ставляет сотни миллионов, покрывая самые разнообразные потребности промышленного и сельскохозяйственного производства, судовых, авиаци­онных и транспортных систем, систем автоматики, военной и специальной техники.

Эти двигатели сравнительно просты по конструкции, весьма на­дежны в эксплуатации, имеют достаточно высокие энергетические показа­тели и невысокую стоимость. Именно поэтому непрерывно расширяется сфера использования асинхронных двигателей как в новых областях техники, так и взамен более сложных электрических машин различных конструкций.

Например, значительный интерес в последние годы вызывает приме­нение асинхронных двигателей в генераторном режиме для обеспечения питанием как потреби­телей трехфазного тока, так и потребителей постоянного тока через вы­прямительные устройства. В системах автоматического управления, в сле­дящем электроприводе, в вычислительных устройствах широко применя­ются асинхронные тахогенераторы с короткозамкнутым ротором для пре­образования угловой скорости в электрический сигнал.

Применение асинхронного режима генератора


В определенных условиях эксплуатации автономных источников электроэнергии применение асинхронный режим генератора оказывается предпочтительным или даже единственно возможным решением, как, например, в высокоскоростных передвижных электростанциях с безредукторным газотурбинным приво­дом с частотой вращения п = (9…15)10 3 об/мин. В работе описан АГ с массивным ферромагнитным ротором мощностью 1500 кВт при п = =12000 об/мин, предназначенный для автономного сварочного комплекса «Север». В данном случае массивный ротор с продольными пазами прямо­угольного сечения не содержит обмоток и выполняется из цельной сталь­ной поковки, что дает возможность непосредственного сочленения ротора двигателя в генераторном режиме с газотурбинным приводом при окружной скорости на поверхности ро­тора до 400 м/с. Для ротора с шихтованным сердечником и к.з. обмоткой типа «беличья клетка» допустимая окружная скорость не превышает 200 - 220 м/с.

Другим примером эффективного применения асинхронного двигателя в генераторном режиме является давнее их использование в мини-ГЭС при устойчивом режиме нагрузки.

Отличаются простотой эксплуатации и обслуживания, легко включаются на параллельную работу, а форма кривой выходного напря­жения у них ближе к синусоидальной, чем у СГ при работе на одну и ту же нагрузку. Кроме того, масса АГ мощностью 5-100 кВт примерно в 1,3 — 1,5 раза меньше массы СГ такой же мощности и они несут меньший объем обмоточных материалов. При этом в конструктивном отношении они ни­чем не отличаются от обычных АД и возможно их серийное производство на электромашиностроительных заводах, выпускающих асинхронные ма­шины.

Недостатки асинхронного режима генератора,асинхронного двигателя(АД)

Один из недостатков АД - это то, что они являются потребителями значительной реактивной мощности (50% и более от полной мощности), необходимой для создания магнитного поля в машине, которая должна по­ступать из при параллельной работе асинхронного двигателя в генераторном режиме с сетью или от другого ис­точника реактивной мощности (батарея конденсаторов (БК) или синхрон­ный компенсатор (СК)) при автономной работе АГ. В последнем случае наиболее эффективно включение батареи конденсаторов в цепь статора параллельно нагрузке хотя в принципе возможно ее включение в цепь ро­тора. Для улучшения эксплуатационных свойств асинхронного режима генератора в цепь статора допол­нительно могут включаться конденсаторы последовательно или парал­лельно с нагрузкой.

Во всех случаях автономной работы асинхронного двигателя в генераторном режиме источники реактивной мощ­ности (БК или СК) должны обеспечивать реактивной мощностью как АГ, так и нагрузку, имеющую, как правило, реактивную (индуктивную) со­ставляющую (соsφ н < 1, соsφ н > 0).

Масса и размеры конденсаторной батареи или синхронного компен­сатора могут превосходить массу асинхронного генератора и только при соsφ н =1 (чисто актив­ная нагрузка) размеры СК и масса БК сопоставимы с размером и массой АГ.

Другой, наиболее сложной проблемой является проблема стабилиза­ции напряжения и частоты автономно работающего АГ, имеющего «мяг­кую» внешнюю характеристику.

При использовании асинхронного режима генератора в составе автономной эта проблема ос­ложняется еще и нестабильностью частоты вращения ротора. Возможные и применяемые в настоящее способы регулирования напряжения асинхронном режиме генератора.

При проектировании АГ для оптимизационные расчеты следует вести по максимуму КПД в широком диапазоне изменения частоты враще­ния и нагрузки, а также по минимуму затрат с учетом всей схемы управле­ния и регулирования. Конструкция генераторов должна учитывать клима­тические условия работы ВЭУ, постоянно действующие механические усилия на элементы конструкции и особенно — мощные электродинамиче­ские и термические воздействия при переходных процессах, которые возникают при пусках, перерывах питания, выпадении из синхронизма, ко­ротких замыканиях и других, а также при значительных порывах ветра.

Устройство асинхронной машины,асинхронного генератора

Устройство асинхронной машины с короткозамкнутым ротором по­казано на примере двигателя серии АМ (рис. 5.1).

Основными частями АД являются неподвижный статор 10 и вра­щающийся внутри него ротор, отделенный от статора воздушным зазором. Для уменьшения вихревых токов сердечники ротора и статора набираются из отдельных листов, отштампованных из электротехнической стали тол­щиной 0,35 или 0,5 мм. Листы оксидируются (подвергаются термической обработке), что увеличивает их поверхностное сопротивление.
Сердечник статора встраивается в станину 12, являющуюся внешней частью машины. На внутренней поверхности сердечника имеются пазы, в которых уложена обмотка 14. Статорную обмотку чаще всего делают трехфазной двухслойной из отдельных катушек с укороченным шагом из изолированного медного провода. Начала и концы фаз обмотки выводят на зажимы коробки выводов и обозначают так:

начала - СС2, С 3 ;

концы - С 4, С5, Сб.

Обмотку статора можно соединить звездой (У) или треугольником (Д). Это дает возможность применять один и тот же двигатель при двух различных линейных напряжениях, находящихся в отношении напри­мер, 127/220 В или 220/380 В. При этом соединению У соответствует включение АД на высшее напряжение.

Сердечник ротора в собранном виде запрессовывается на вал 15 го­рячей посадкой и предохраняется от проворачивания при помощи шпонки. На внешней поверхности сердечник ротора имеет пазы для укладки обмот­ки 13. Обмотка ротора в наиболее распространенных АД представляет со­бой ряд медных или алюминиевых стержней, расположенных в пазах и замкнутых по торцам кольцами. В двигателях мощностью до 100 кВт и бо­лее обмотка ротора выполняется заливкой пазов расплавленным алюми­нием под давлением. Одновременно с обмоткой отливаются и за­мыкающие кольца вместе с вентиляционными крылатками 9. По форме та­кая обмотка напоминает «беличью клетку».

Двигатель с фазным ротором.Асинхронный режим генератор а.

Для специальных асинхронных двигателях обмотка ротора может выполняться по­добно статорной. Ротор с такой обмоткой помимо указанных частей имеет три укрепленных на валу контактных кольца, предназначенных для соеди­нения обмотки с внешней цепью. АД в этом случае называется двигателем с фазным ротором или с контактными кольцами.

Вал ротора 15 объединяет все элементы ротора и служит для соеди­нения асинхронного двигателя с исполнительным механизмом.

Воздушный зазор между ротором и статором составляет от 0,4 — 0,6 мм для машин малой мощности и до 1,5 мм у машин большой мощности. Подшипниковые щиты 4 и 16 двигателя служат опорой для подшипников ротора. Охлаждение асинхронного двигателя осуществляется по принципу самообдува вентилятором 5. Подшипники 2 и 3 закрыты снаружи крышка­ми 1 , имеющими лабиринтовые уплотнения. На корпусе статора устанав­ливается коробка 21с выводами 20 обмотки статора. На корпусе укрепля­ется табличка 17, на которой указываются основные данные АД. На рис.5.1 обозначено также: 6 — посадочное гнездо щита; 7 — кожух; 8 — корпус; 18 — лапа; 19 - вентиляционный канал.

Бесперебойное обеспечение электроэнергией – это залог комфортной жизни в любое время года.

Для организации автономного питания жилища часто используется асинхронный генератор, который также можно сделать своими руками.

Что это такое

Асинхронный генератор – это устройство переменного тока, который при помощи принципа работы асинхронного двигателя, может производить электрическую энергию. Его еще называют индукционным. Асинхронный электрогенератор обеспечивает быстрый поворот ротора, скорость вращения при этом намного больше, чем, если бы их вращал синхронный аналог устройства. Обычный асинхронный электродвигатель переменного тока может использоваться как генератор без каких-то дополнительных настроек или преобразований схемы.

Фото – асинхронный генератор

Область использования асинхронного генератора довольно широкая:

  1. Их применяют как двигатели для ветровых электростанций;
  2. С целью обеспечения автономного питания дома или квартиры, или как миниатюрные ГЭС-станции;
  3. Как инверторный (сварочный) генератор;
  4. Для организации бесперебойного питания от переменного тока.

При этом однофазный асинхронный генератор должен быть включен при помощи входящего напряжения. Обычно для этого устройство подключают к питанию. Но некоторые модели могут работать самостоятельно, самовозбуждением, посредством последовательного подключения конденсаторов.
Видео: устройство асинхронного двигателя

Принцип работы

Асинхронный электрический генератор производит электрическую энергию, когда скорость вращения ротора быстрее, чем синхронная. У самого обычного генератора этот показатель находится в пределах 1800 оборотов в минуту, при этом характеристики синхронной скорости около 1500 об/мин.


Схема генератора

Принцип работы асинхронного генератора основан на преобразовании механической энергии в энергию тока, т. е., электрическую. Для того чтобы ротор начал крутиться и вырабатывать ток, нужен довольно сильный крутящий момент. Идеальным, по мнению электриков, считается так называемый «вечный холостой ход», при котором поддерживается равная скорость вращения на протяжении всей работы асинхронного генератора.

Как сделать самому

Купить асинхронный генератор – это дорогое удовольствие, тем более что можно его сделать самостоятельно. Принцип работы прост, главное – обеспечить себя необходимыми инструментами.

  1. Согласно принципу действия устройства, Вам нужно настроить генератор так, чтобы скорость его вращения была выше, чем обороты двигателя. Для этого подключаем электродвигатель к сети и заводим его. Чтобы вычислить скорость вращения двигателя, нужно использовать тахогенератор или тахометр;
  2. К полученному значению нужно добавить 10 %. Скажем, технические характеристики двигателя 1200 об/мин, значит, генератор должен иметь 1320 об/мин (1200 * 0,1 % = 120, 120 + 1200 = 1320 об/мин);
  3. Далее, переделка асинхронного двигателя в генератор включает в себя подбор необходимой емкости для используемых конденсаторов (каждый конденсатор между фазами аналогичен предыдущему);
  4. Следите за тем, чтоб емкость не была слишком большой, иначе асинхронный генератор будет нагреваться;
  5. Подбираете конденсаторы, необходимые для обеспечения определенной скорость вращения, расчет которой производился выше. Их установка требует особенной внимательности, очень важно, чтобы они были изолированы при помощи специальных покрытий.

На этом обустройство генератора на базе двигателя окончено. Теперь его можно устанавливать как источник энергии. Важно помнить, что устройство с короткозамкнутым ротором производит довольно высокое напряжение, поэтому если Вам нужен показатель 220 В, есть резон установить понижающий трансформатор.


Схема включения двигателя в качестве генератора

Вот так выглядит схема, как сделать ветрогенератор из асинхронного двигателя, здесь основные отличия заключаются в скорости вращения и в принципе включения. Как пример, представляем Вам схему ветряной ГЭС, которую включает асинхронный бензиновый генератор.

При этом нужно отметить, что он не работает с самозапиткой, в большинстве случаев, для включения такого генератора используется специальный мотоблок или блок управления по типу замка зажигания.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1

Часть 2

Часть 3

Часть 4

Часть 5

Часть 6

В качестве генератора с небольшой мощностью, можно применять даже однофазные асинхронные двигатели от бытовых электроприборовстиральных машин Geko, дренажных насосов и т. д. Как и двухопорный двигатель, мотор от таких устройств нужно подключать параллельно их обмотке. Еще один способ – это использовать конденсаторы сдвига фазы. Они не всегда отличаются нужной мощностью, поэтому нужно будет её увеличить до необходимых показателей. Такой простой генератор можно будет использовать для питания лампочек или модемов. Если немного переделать схему, то Вам удастся подключить этот автономный прибор даже к обогревателю или электрической печке. Также можно сделать подобный генератор на постоянных магнитах.


Фото – маломощный генератор
  1. Любой асинхронный генератор (бензогенератор, электрический, бесщеточный) считается устройством с повышенный уровнем опасности, поэтому постарайтесь его изолировать;
  2. Каждый автономный генератор обязательно должен быть оснащен дополнительными измерительными устройствами, чтобы фиксировать данные о его работе. Это должен быть частотометр или тахометр, а также вольтметр;
  3. Желательно обустроить генератор кнопками включения и выключения;
  4. Данный тип электрогенератора, в обязательном порядке, заземляется;
  5. Будьте готовы к тому, что КПД асинхронного генератора будет падать на 30, а иногда и на 50 % – это явление неизбежно при преобразовании механической энергии в электрическую;
  6. Заменить устройство при необходимости могут синхронные бесщеточные генераторы типа ГС-200 или ГС-250, асинхронные АИР 63, ЕСС 5-93-4у2 (75 кВт), и прочие, цена которых от 30 000 рублей в Красноярске и от 35 000 в Москве;
  7. Очень важен тепловой режим асинхронного генератора. Как и ДВС он может нагреваться от холостого хода, следите за температурой устройства.

В статье рассказано о том, как построить трёхфазный(однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока.

Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту. Асинхронные электродвигатели-самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части - статора и подвижной части - ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название-короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом. Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора. Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели, которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы - трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность. Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим. Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Рис.1 Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Q = 0,314·U2·C·10 -6,

где С - ёмкость конденсаторов, мкФ.

Мощность генератора,

Холостой ход

ёмкость,

реактивная мощность,

ёмкость,

реактивная мощность,

ёмкость,

реактивная мощность,

Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости.

Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы.

Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора.

Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте.

Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом.

Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя.

В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя-генератора определяется мощностью подключаемых устройств. Наиболее энергоёмкими из них являются:

· бытовые сварочные трансформаторы;

· электропилы, электрофуганки, зернодробилки (мощность 0,3…3 кВт);

· электропечи типа "Россиянка", "Мечта" мощностью до 2 кВт;

· электроутюги (мощность 850…1000 Вт).

Особо хочу остановиться на эксплуатации бытовых сварочных трансформаторов.

Их подключение к автономному источнику электроэнергии наиболее желательно, т.к. при работе от промышленной сети они создают целый ряд неудобств для других потребителей электроэнергии. Если бытовой сварочный трансформатор рассчитан на работу с электродами диаметром 2…3 мм, то его полная мощность составляет примерно 4…6 кВт, мощность асинхронного генератора для его питания должна быть в пределах 5…7 кВт.

Если бытовой сварочный трансформатор допускает работу с электродами диаметром 4 мм, то в самом тяжелом режиме - "резки" металла, потребляемая им полная мощность может достигать 10…12 кВт, соответственно мощность асинхронного генератора должна находиться в пределах 11…13 кВт.

В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соs φ в промышленных осветительных сетях. Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом. КМ- косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории).

В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя.

Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.

Рис.2 Двухфазный режим асинхронного генератора.

Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит "драгоценное" топливо.

В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа "Ока", "Волга", поливальных насосов "Агидель", "БЦН" и пр. У них конденсаторная батарея должна подключаться параллельно рабочей обмотке. Можно использовать уже имеющийся фазосдвигающий конденсатор, подключив его к рабочей обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить. Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) - больше.

Рис.3 Маломощный генератор из однофазного асинхронного двигателя.

Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%. Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя. При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя.

Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других - коммутируют цепь возбуждения. Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы - ротор невозбужденного генератора еще некоторое время вращают от механического двигателя. Эта процедура продлевает активный срок службы обмоток генератора.

Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: "фазу" и "ноль".

В заключение несколько общих советов.

Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

Обратите внимание на тепловой режим генератора. Он "не любит" холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы - 2/3 общей мощности генератора.

Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме "холостого хода" должно на 4…6 % превышать промышленное значение 220 В /380 В.

Литература:

Л.Г. Прищеп Учебник сельского электрика. М.: Агропромиздат, 1986.
А.А. Иванов Справочник по электротехнике.- К.: Высшая школа, 1984.
cm001.narod.ru

"Сделай сам" 2005, № 3, с.78 - 82


Часто возникает необходимость обеспечить автономное электропитание в дачном домике. В подобной ситуации выручит генератор из асинхронного двигателя, сделанный своими руками. Его несложно изготовить самостоятельно, обладая определенными навыками в обращении с электротехникой.

Принцип работы

Благодаря простой конструкции и эффективному функционированию асинхронные двигатели широко используются в промышленности. Они составляют значительную долю всех двигателей. Принцип их работы заключается в создании магнитного поля действием переменного электрического тока.

Экспериментами доказано, что вращением металлической рамки в магнитном поле можно индуцировать в ней электрический ток, появление которого подтверждается свечением лампочки. Это явление называется электромагнитной индукцией.

Устройство двигателя

Асинхронный двигатель состоит из металлического корпуса, внутри которого находятся:

  • статор с обмоткой, по которой пропускается переменный электрический ток;
  • ротор с витками намотки, по которой проходит ток противоположного направления.

Оба элемента находятся на одной оси. Стальные пластины статора плотно прилегают друг к другу, в некоторых модификациях их прочно сваривают. Медная обмотка статора изолирована от сердечника картонными прокладками. В роторе обмотка выполнена из алюминиевых прутьев, замкнутых с двух сторон. Магнитные поля, образующиеся при прохождении переменного тока, действуют друг на друга. Между обмотками возникает ЭДС, которая вращает ротор, так как статор неподвижен.

Генератор из асинхронного двигателя состоит из тех же составных частей, однако в данном случае происходит обратное действие, то есть переход механической или тепловой энергии в электрическую. При работе в режиме двигателя у него сохраняется остаточная намагниченность, индуцирующая электрическое поле в статоре.

Скорость вращения ротора должна быть выше изменения магнитного поля статора. Затормозить его можно реактивной мощностью конденсаторов. Накапливаемый ими заряд противоположен по фазе и дает «подтормаживающий эффект». Вращение можно обеспечить энергией ветра, воды, пара.

Схема генератора

Генератор из асинхронного двигателя отличается простой схемой. После достижения синхронной скорости вращения происходит процесс образования в обмотке статора электрической энергии.

Если присоединить к обмотке конденсаторную батарею, происходит возникновение опережающего электрического тока, образующего магнитное поле. При этом конденсаторы должны обладать емкостью выше критической, которая определяется техническими параметрами механизма. Сила образующегося тока будет зависеть от емкости батареи конденсаторов и характеристик мотора.

Технология изготовления

Работа по преобразованию асинхронного электромотора в генератор достаточно проста при наличии необходимых деталей.

Для начала процесса по переделке необходимо наличие следующих механизмов и материалов:

  • асинхронного двигателя – подойдет однофазный мотор от старой стиральной машины;
  • прибора для измерения частоты вращения ротора – тахометра или тахогенератора;
  • неполярных конденсаторов – пригодны модели вида КБГ-МН с величиной рабочего напряжения 400 В;
  • набора подручных инструментов – дрели, ножовок, ключей.






Пошаговая инструкция

Изготовление генератора своими руками из асинхронного двигателя производится по представленному алгоритму.

  • Генератор должен настраиваться так, чтобы его скорость была больше частоты оборотов двигателя. Величина скорости вращения измеряется тахометром или другим прибором при включении двигателя в электросеть.
  • Полученная величина должна быть увеличена на 10% от имеющегося показателя.
  • Подбирается емкость для конденсаторной батареи – она не должна быть чересчур большой, в противном случае оборудование будет сильно нагреваться. Для ее расчета можно воспользоваться таблицей зависимости между емкостью конденсатора и реактивной мощностью.
  • На оборудование устанавливается конденсаторная батарея, которая обеспечит расчетную скорость вращения для генератора. Ее установка требует особого внимания – все конденсаторы нужно надежно изолировать.

Для 3-фазных двигателей конденсаторы подключают по типу «звезды» или «треугольника». Первый тип соединения делает возможным выработку электроэнергии при меньшей скорости вращения ротора, но на выходе показатель напряжения будет ниже. Для уменьшения его до 220 В используют понижающий трансформатор.

Изготовление генератора на магнитах

В магнитном генераторе не требуется применение конденсаторной батареи. В этой конструкции используются неодимовые магниты. Для выполнения работы следует:

  • расположить магниты на роторе по схеме, с соблюдением полюсов – на каждом из них должно быть не меньше 8 элементов;
  • предварительно ротор нужно проточить на токарном станке на толщину магнитов;
  • с помощью клея прочно зафиксировать магниты;
  • остаток свободного пространства между магнитными элементами залить эпоксидкой;
  • после установки магнитов нужно проверить диаметр ротора – он не должен увеличиться.

Преимущества самодельного электрогенератора

Генератор из асинхронного двигателя, сделанный своими руками, станет экономичным источником тока, который позволит снизить потребление централизованной электроэнергии. С его помощью можно обеспечить питание бытовых электроприборов, компьютерной техники, обогревателей. Самодельный генератор из асинхронного двигателя обладает несомненными достоинствами:

  • простой и надежной конструкцией;
  • эффективной защитой внутренних частей от пыли или влаги;
  • устойчивостью к перегрузкам;
  • длительным сроком эксплуатации;
  • возможностью подключать приборы без инверторов.

При работе с генератором следует учесть также возможность случайных изменений электрического тока.