Ветряная турбина. Ветровые турбины Вертикальная ветровая турбина

Вопрос ветроэнергетики в наше инновационное время интересует очень многих. Те, кто хоть раз посещал Европейские страны на своем авто, наверняка видели огромные ветропарки.
Сотни генераторов встречаются по пути.

Наблюдая такую картину, многие начинают верить, что получение эл.энергии при помощи ветра, весьма перспективное и выгодное занятие. Мудрые европейцы ошибаться то не могут.

При этом, почему-то игнорируется факт, что в других местах той же Европы, подобных ветроэлектростанций практически нет. С чего бы это?
Вот именно об этом, когда, где и как ветряки использовать выгодно, а когда нет, и пойдет речь в статье.

Автономность

Наверняка после очередного подорожания электроэнергии, вы задумывались об установке у себя на участке ветрогенератора. Тем самым, обеспечив если не всю, то большую часть своих потребностей в электричестве.

Некоторые даже подумывают таким образом стать независимыми от электросетей. Насколько это реально и возможно? К сожалению, для 90% владельцев частных домов, эти мечты так и останутся мечтами.

И дабы вы не тратили понапрасну свои деньги, расскажем с выкладкой всех цифр, почему это именно так.

Скорость ветра

К сожалению, в нашей стране не так много регионов, где скорость ветра находится хотя бы на уровне 5-7 метров в секунду. Берутся данные в среднем за год. В подавляющем большинстве широт, пригодных для проживания, эта самая скорость равняется максимум 2-4 м/с.

Это говорит о том, что ваша ветроустановка большую часть времени, элементарно не будет работать. Для стабильной выработки электричества, ей нужен ветер около 10 м/с.

Если в вашем районе ветер 7м/с, то генератор будет работать максимум на 50% от своего номинала. А если всего 2м/с, то и вовсе на 5%.

Фактически за час, 2квт генератор подарит вам не более 100Вт.

Еще вы столкнетесь с другой проблемой ветра, о которой умалчивают производители. Около земли, его скорость гораздо меньше чем наверху, там где ставятся промышленные установки высотой 25-30м.

Вы же свой агрегат будете монтировать максимум на десяти метрах. Поэтому даже не ориентируйтесь на таблицы ветров с разных сайтов. Эти данные вам не подходят.

Производители скромно умалчивают, что для их карт ветроресурсов, замеры производятся на высоте от 50 до 70 метров! К тому же там не учтены данные по турбулентности, завихрениям.

Попробуете задрать повыше чем 10м, обязательно задумаетесь о молниезащите. Наэлектризованные трением воздуха лопасти, очень вкусная приманка для разрядов!

К тому же, почему-то все беспокоятся только о таком параметре, как скорость ветра, и при этом забывают про его плотность или давление. А разница для энергетики весьма существенная. Зависимость выработки электроэнергии от давления ветра непропорциональная.

Так, при увеличении давления ветра в два раза, генерируемая мощность возрастает в восемь раз!


Кроме того, есть определенное лукавство в указанных технических характеристиках генераторов.

Верить им конечно можно, но только для идеальных условий. Потому что:


  • и в ламинарном потоке при неизменном направлении и повышенной плотности

У вас же на дачном участке скорость ветра может быть такой, что не получится и вал прокрутить, не то что вырабатывать энергию.

И это весной или осенью. Именно в этот период происходят наиболее активные перемещения воздушных масс.

Не забывайте, что ветряк работает не в режиме холостого хода вертушки, а должен раскрутить ротор генератора в окружении неодимовых магнитов.

И это только до тех пор, пока электрический потенциал ветряка ниже напряжения АКБ. При достижении напряжения достаточного для начала заряда, аккумулятор превращается в нагрузку.

Если применить тихоходные конструкции с вертикальной осью вращения, то здесь уже присутствует повышающий редуктор. Вы пытались раскрутить повышающий редуктор? Такая конструкция усложняется, увеличивается вес, парусность, стоимость.

Даже на маяках Северного флота, учитывая там постоянные ветра и полярную ночь, специалисты предпочитают использовать солнечные батареи. На вопрос почему так, отвечают по-простому – проблем меньше!

Аккумуляторные батареи для ветряков

Большие промышленные ветротурбины могут передавать энергию напрямую в сеть, минуя всякие аккумуляторы.

А вот вы без них обойтись никак не сможете. Без АКБ не будет работать ни телевизор, ни холодильник. Даже освещение будет светить урывками, в зависимости от порывов ветра.

При этом за 12-15 лет работы генератора, вы обязаны будете сменить 3-4 комплекта АКБ, тем самым вдвое увеличив свои начальные расходы. Причем мы берем чуть ли не идеальный вариант, когда аккумуляторы будут разряжаться не больше половины от своей емкости.

Конечно вы можете купить дешевые модели АКБ, но затраты от этого не станут меньше. Просто поход в магазин за новыми батареями будет осуществлен не 4 раза, а уже 8.

Где лучше установить

Еще о чем стоит серьезно задуматься - это наличие свободного места. Причем по площади оно может уходить на 100 и более метров в каждую сторону от мачты.

Ветер должен свободно гулять по лопастям, и без помех их достигать со всех сторон. Получается, что вы должны проживать либо в степи, либо возле моря (лучше непосредственно на его берегу).

Идеальное место будет на вершине холма. Где с позиции аэродинамики, воздушный поток уплотняется с соответствующим увеличением скорости и давления ветра.

О соседях рядом забудьте. Их сады и двух-трехэтажные особняки, здорово “попьют вашу кровушку”, каждый раз перекрывая попутный ветерок. Также как и соседние лесопосадки.

Те же самые промышленные ветряки, не располагают непосредственно друг за другом, а монтируют их по диагонали. Каждый последующий, не должен закрывать предыдущий.

Цена за 1квт мощности

4-я причина – высокая цена. Не ведитесь на цены продавцов в прайс листах. В них никогда не показывается реальная стоимость всего необходимого оборудования.
Поэтому цены всегда умножайте на 2, даже при выборе так называемых готовых комплектов.

Но и это еще не все. Не забудьте про эксплуатационные расходы, доходящие до 70% от стоимости ветряков. Попробуйте поремонтировать генератор на высоте, либо каждый раз демонтировать и разбирать-собирать мачту.

Еще не забудьте про периодическую замену АКБ. Поэтому не рассчитывайте, что ветряк может вам обойтись в 1 доллар за 1квт эл.энергии.

Когда вы посчитаете все реальные затраты, окажется что каждый киловатт мощности такого ветрогенератора, обошелся вам минимум в 5 баксов.

Срок окупаемости и расчет экономии

Пятая причина, неразрывно связана с первыми четырьмя. Это срок окупаемости затрат.

Для вашей индивидуальной ветровой установки этот срок – НИКОГДА.

Стоимость ветряка, мачты и доп.оборудования для 2-х киловаттных качественных моделей будет доходить в среднем до 200 тыс. рублей. Производительность таких установок – от 100 до 200квт в месяц, не более. И это при хороших погодных условиях.

Даже осадки снижают мощность ветряков. Дождь на 20%, снег – на 30%.

Вот и получается вся ваша экономия – это 500 рублей. За 12 месяцев непрерывной работы, набежит уже чуть больше – 6 тысяч.

Но если вспомнить начальные траты в 200тыс., то вернете вы их через тридцать два года!

И все это без учета эксплуатационных затрат. А если прикинуть, что средний срок службы хорошего ветряка – около 20лет, то получается, что он окончательно и безвозвратно поломается еще до того, как выйдет на окупаемость.

При этом, 2-х киловаттный агрегат не будет закрывать на 100% ваши потребности. Максимум на треть! Если захотите целиком все подключить от него, то берите 10-ти киловаттную модель, не меньше. Срок окупаемости от этого не изменится.

Но тут уже будут совсем другие габариты и масса.

И закрепить его просто так на трубе через чердак своей крыши, точно не получится.

Однако некоторые все равно убеждены, что из-за бесконечного подорожания электроэнергии, ветрогенератор в один прекрасный момент, по любому станет выгоден.

Когда стоит покупать ветряк

Безусловно, электроэнергия с каждым годом дорожает. К примеру 10 лет назад, ее цена была на 70% ниже. Давайте проведем примерные расчеты и выясним перспективу выхода на окупаемость ветряка, с учетом резкого удорожания электричества.

Рассматривать будем генератор мощностью 2квт.

Как мы уже выяснили ранее, стоимость такой модели около 200тысяч. Но с учетом всех доп.расходов, нужно умножить ее на два. Получится минимум 400 тыс.руб. затрат, при сроке службы в двадцать лет.

То есть, за год получается 20 тысяч. При этом по факту, за этот год агрегат выдаст вам максимум 900 квт. Из-за коэфф. установленной мощности (он для маленьких ветряков не превышает пяти процентов), за месяц вы накрутите 75квт.

Даже если взять 1000 квт в год для простоты расчетов, стоимость 1квт/ч полученная от ветряка, для вас составит 20 рублей. Если и предположить что электричество от ТЭС подорожает в 4 раза, то случится такое не завтра, и даже не через 5 лет.

Какие ветряки выбирать

Ну а тем, кто живет далеко от подстанций и ВЛ-0,4кв, стоит приобретать наиболее мощные модели ветряков, какие вы только можете себе позволить. Так как от той мощности, что указана на картинках, вам достанется не более 15%.

Другая категория потребителей, вполне заслужено делает выбор не в пользу китайских заводских моделей, а наоборот, предпочитает самодельные ветряки от мастеров самоучек. Свои выгоды в этом тоже имеются.

В большинстве своем, изобретатели подобных девайсов, это грамотные и ответственные ребята. И практически в 100% случаев, без проблем им можно вернуть установку, если что-то пошло не так, или ее нужно подремонтировать. С этим проблем уж точно не будет.

У промышленных китайский ветряков, внешний вид конечно посимпатичнее. И если вы все-таки решились прикупить именно его, сразу после проверки электродрелью, сделайте профилактический ремонт и замените китайский металлолом на подшипники с качественной смазкой.

Если поблизости от вас есть крупные гнездовья птиц, не помешает закупить дополнительный комплект лопастей.

Птенцы иногда попадают под раздачу крутящейся “мини мельницы”. Пластиковые лопасти ломаются, а металлические гнутся.

А закончить хотелось бы мудростью от тех пользователей, которые не послушались всех доводов и вплотную столкнулись со всеми вышеописанными проблемами. Запомните, самый дорогой флюгер для дома – это ветрогенератор!

После восемнадцати месяцев подготовки, проект стоимостью в 1,3 млн долларов США носящий название «Парящая ветряная турбина Altaeros» (Altaeros Buoyant Airborne Turbine (BAT)) будет работать на высоте 1000 футов (304,8 м) над землей.

Проект, частично финансируемый за счет фонда Аляски Energy Authority"s Emerging Energy Technology Fund, станет первой долгосрочной демонстрацией воздушной турбины такого типа. В настоящее время он размещается на юге города Фэрбенкс в центральной части Аляски.

Находящийся на высоте 1000 футов, пилотный проект промышленных масштабов будет располагаться на более чем 275 футов выше, чем нынешний рекордсмен самого высокого размещения ветряной турбины - Vestas V164-8.0-MW. Vestas недавно установил свой первый прототип в Датском национальном центре тестирования больших турбин (Danish National Test Center for Large Wind Turbines) в Остерильде (Østerild), у которого высота расположения оси ветряной турбины равна 460 футов (140 метров), а лопасти простираются в высоту более 720 футов (220 метров).

Мощность турбины Altaeros составляет 30 кВт, она создает достаточно для обеспечения 12 домов. Но, по словам компании, это только начало. Она также может поднять на себе коммуникационное оборудование, такое как сотовые радиопередатчики, метеорологические приборы или другую чувствительную аппаратуру. Компания уверяет, что дополнительное оборудование не влияет на производительность турбины.

Altaeros разработала свою турбину для обеспечения постоянной дешевой энергией рынка в 17 миллиардов долларов США, являющего собой отдаленные локации и локальные микросети, не входящие в основную электрическую сеть, которые в настоящее время полностью зависят от дорогостоящих дизельных генераторов. Целевыми клиентами также являются находящиеся на острове и удаленные общины, фирмы по добыче нефти и газа, полезных ископаемых и , телекоммуникационные фирмы, спасательные организации, и военные базы.

Чтобы подняться на большую высоту к сильным и устойчивым ветрам, недостижимым для турбин наземной и морской установки, ВАТ использует наполненную гелием невоспламеняемую надувную оболочку. Высокопрочные канаты обеспечивают турбине устойчивость и являются проводниками для выработанной энергии. Подъемная технология адаптирована для конкретного применения и аналогична применяемой в аэростатах, промышленных родственниках дирижаблей, несущих тяжелое коммуникационное оборудование в течение десятилетий. Они способны противостоять ураганным и оснащены технологиями, обеспечивающими плавную посадку в большинстве непредвиденных и аварийных ситуаций.

В 2013 году Altaeros успешно протестировала прототип ВАТ при скорости ветра 72 км/ч на высоте 150 метров на своем испытательном полигоне в штате Мэн. Но поскольку технология аналогична аэростатам, турбина может противостоять более сильному ветру. Технологически, парящая турбина может быть запущена в эксплуатацию в течении 24 часов, поскольку не требует кранов и заливки фундамента. Наземная силовая станция контролирует лебедки, удерживающие турбину, а так же преобразует электричество перед отправкой в локальную сеть.

Похоже, что новый виток развития ветровой энергетики уже совсем близко и скоро мы сможем наблюдать «стаи» парящих гигантов, обеспечивающих нам домашний уют, связь, производство и все то, что невозможно без электричества.

сайт по материалам altaerosenergies.com

Неуклонное истощение природных ресурсов приводит к тому, что в последнее время человечество занято поиском альтернативных источников энергии. На сегодняшний день известно достаточно большое количество видов альтернативной энергетики, одним из которых является использование силы ветра.

Энергия ветра применялась людьми с древности, например, в работе ветряных мельниц. Самый первый ветрогенератор (ветряная турбина), который служил для производства электричества, был построен в Дании в 1890 г. Такие устройства стали применяться в тех случаях, когда требовалось обеспечить электроэнергией какой-либо труднодоступный район.

Принцип действия ветрогенератора:

  • Ветер вращает колесо с лопастями, которое передает крутящий момент на вал генератора через редуктор.
  • Инвертор выполняет задачу преобразования полученного постоянного электрического тока в переменный.
  • Аккумулятор предусмотрен для подачи в сеть напряжения при отсутствии ветра.

Мощность ВЭУ находится в прямой зависимости от диаметра ветроколеса, высоты мачты и силы ветра. В настоящее время производятся ветрогенераторы, диаметр лопастей которых от 0,75 до 60 м и более. Самая маленькая из всех современных ВЭУ – G-60. Диаметр ротора, имеющего пять лопастей, всего 0,75 м, при скорости ветра 3-10 м/с она может вырабатывать мощность 60 Вт, вес ее составляет 9 кг. Такая установка с успехом применяется для освещения, зарядки батарей и работы средств связи.

Все ветряные генераторы могут быть классифицированы по нескольким принципам:

  • Оси вращения.
  • Количеству лопастей.
  • Материалу, из которого выполнены лопасти.
  • Шагу винта.

Классификация по оси вращения:

  • Горизонтальные.
  • Вертикальные.

Наибольшую популярность получили горизонтальные ветрогенераторы, ось вращения турбины которых расположена параллельно земле. Этот тип получил название «ветряной мельницы», лопасти которой вращаются против ветра. Конструкция горизонтальных ветрогенераторов предусматривает автоматический поворот головной части (в поисках ветра), а также поворот лопастей, для использования ветра небольшой силы.

Вертикальные ветрогенераторы гораздо менее эффективны. Лопасти такой турбины вращаются параллельно поверхности земли при любом направлении и силе ветра. Так как при любом направлении ветра половина лопастей ветроколеса всегда вращается против него, ветряк теряет половину своей мощности, что значительно снижает энергоэффективность установки. Однако ВЭУ такого типа проще в установке и обслуживании, поскольку ее редуктор и генератор размещаются на земле. Недостатками вертикального генератора являются: дорогостоящий монтаж, значительные эксплуатационные затраты, а также то, что для установки такой ВЭУ требуется немало места.

Ветрогенераторы горизонтального типа больше подходят для производства электроэнергии в промышленных масштабах, их используют в случае создания системы ветряных электростанций. Вертикальные часто применяют для потребностей небольших частных хозяйств.

Классификация по количеству лопастей:

  • Двухлопастные.
  • Трехлопастные.
  • Многолопастные (50 и более лопастей).

По количеству лопастей все установки делятся на двух- и трех- и многолопастные (50 и более лопастей). Для выработки необходимого количества электроэнергии требуется не факт вращения, а выход на необходимое количество оборотов.

Каждая лопасть (дополнительная) увеличивает общее сопротивление ветрового колеса, что делает выход на рабочие обороты генератора более сложным. Таким образом, многолопастные установки действительно начинают вращаться при меньших скоростях ветра, однако они применяются в том случае, когда имеет значение сам факт вращения, как, например, при перекачке воды. Для выработки электроэнергии ветрогенераторы с большим количеством лопастей практически не применяются. К тому же на них не рекомендуется установка редуктора, потому что это усложняет конструкцию, а также делает ее менее надежной.

Классификация по материалам лопастей:

  • Ветрогенераторы с жесткими лопастями.
  • Парусные ветрогенераторы.

Следует отметить, что парусные лопасти значительно проще в изготовлении, а потому менее затратны, нежели жесткие металлические или стеклопластиковые. Однако подобная экономия может обернуться непредвиденными расходами. Если диаметр ветроколеса составляет 3 м, то при оборотах генератора 400-600 об/мин кончик лопасти достигает скорости 500 км/ч. С учетом того обстоятельства, что в воздухе содержится песок и пыль, этот факт является серьезным испытанием даже для жестких лопастей, которые в условиях стабильной эксплуатации требуют ежегодной замены антикоррозийной пленки, нанесенной на концы лопастей. Если не обновлять антикоррозионную пленку, то жесткая лопасть постепенно начнет терять свои рабочие характеристики.

Лопасти парусного типа требуют замены не раз в год, а непосредственно после возникновения первого серьезного ветра. Поэтому автономное электроснабжение, требующее значительной надежности компонентов системы, не рассматривает применение лопастей парусного типа.

Классификация по шагу винта:

  • Фиксированный шаг винта.
  • Изменяемый шаг винта.

Безусловно, изменяемый шаг винта увеличивает диапазон эффективных рабочих скоростей ветрогенератора. Однако внедрение данного механизма ведет к усложнению лопастной конструкции, к увеличению веса ветрового колеса, а также снижает общую надежность ВЭУ. Следствием этого является необходимость усиления конструкции, что приводит к значительному удорожанию системы не только при приобретении, но и при эксплуатации.

Современные ветрогенераторы представляют собой высокотехнологичные изделия, мощность которых составляет от 100 до 6 МВт. ВЭУ инновационных конструкций позволяют экономически эффективно использовать энергию самого слабого ветра – от 2 м/с. При помощи ветрогенераторов сегодня можно с успехом решать задачи по электроснабжению островных или локальных объектов любой мощности.

Развитые страны давно сделали ставку на возобновляемые источники энергии, в том числе на ветроэнергетику. В результате суммарная мощность всех работающих в мире атомных электростанций составляет немногим более 400 тыс. МВт, а суммарная мощность ветряных станций превысил 500 тыс. МВт! Впрочем, в странах, где уделяется внимание ветроэнергетике нет ни Газпрома, ни РАО ЕЭС. Как и подсаживания на нефтяную иглу… Но не будем о наболевшем.

Итак, в свободных от всевластия монополий и клановой системы странах преобладают ветрогенераторы пропеллерного типа, с горизонтальной осью вращения. Такие генераторы требуют мощных опорных башен с дорогостоящими фундаментами, что увеличивает сроки окупаемости. К тому же, такие агрегаты являются мощными низкочастотными источниками шума. Вращается пропеллерный «ветряк» со скоростью всего 15-30 оборотов в минуту, а после редуктора обороты увеличивается до 1500, в результате с такой же скоростью вращается и вал генератора, который вырабатывает электроэнергию. Эта классическая схема имеет существенные недостатки: редуктор – сложный и дорогой механизм (до 20% от стоимости всего ветрогенератора), требует сезонной замены и очень быстро изнашивается (см. ).

Актуальность разработки ветряной турбины

Эти обстоятельства ограничивают круг покупателей и заставляет искать альтернативу традиционным ветряным электрогенераторам. Вертикально–осевые ветряные турбины стали современным трендом. Они бесшумны и не требуют больших капитальных затрат, проще и дешевле в обслуживании, нежели горизонтально - осевые турбины. Ветряные генераторы с горизонтальной осью переводятся в защитный режим (авторотации) при предельной скорости ветра, превышение которой чревато разрушением конструкции. В таком режиме пропеллер отсоединён от мультипликатора и генератора, электроэнергия не вырабатывается. А роторы с вертикальной осью испытывают значительно меньшие механические напряжения при равной скорости ветра, нежели роторы с горизонтальной осью. К тому же последние требуют дорогостоящих систем ориентации по направлению ветра.

До самого последнего времени считалось, что для VAWT невозможно получить коэффициент быстроходности (отношение максимальной линейной скорости лопастей к скорости ветра) больше единицы. Эта чрезмерно широко трактуемая предпосылка, верная только для роторов отдельных типов, привела к ложным выводам о том, что предельный коэффициент использования энергии ветра у вертикально-осевых ВЭУ ниже, чем у горизонтально-осевых пропеллерных, из-за чего этот тип ВЭУ почти 40 лет вообще не разрабатывался. И только в 60-х–70-х годах сначала канадскими, а затем американскими и английскими специалистами было экспериментально доказано, что эти выводы неприменимы к роторам Дарье, использующим подъемную силу лопастей. Для этих роторов указанное максимальное отношение линейной скорости рабочих органов к скорости ветра достигает 6:1 и выше, а коэффициент использования энергии ветра не ниже, чем у горизонтально-осевых (пропеллерного типа). Немаловажную роль играет и то обстоятельство, что объем теоретических исследований аэродинамики вертикально–осевых роторов и опыт разработки и эксплуатации ветрогенераторов на их основе гораздо меньше, чем для горизонтально-осевых роторов.

Создана отличная от остальных ветряная турбина вертикально–осевого типа (международное обозначение VAWT), коэффициент использования энергии ветра которой не уступает лучшим мировым ветрогенераторам с горизонтальной осью вращения. Инновационный многоплановый подход к конструкции вертикальных ветрогенераторов основан среди прочего и на использовании низко расположенного прочного ротора, на периферии которого закреплено множество парусов–крыльев.

Ротор снабжён опорными стойками колёсных шасси, что позволяет ему вращаться вокруг неподвижной оси с устойчивой порой на фундамент за счёт колёс шасси. Множество парусов–крыльев создают за счёт аэродинамических сил большой вращательный момент. Что делает данную конструкцию рекордной по удельной мощности. Диаметр ротора может составлять 10 метров. При этом на таком роторе возможна установка крыльев площадью более 200 квадратных метров, что позволит генерировать до ста киловатт электроэнергии.

Размеры и вес агрегатов

При этом вес таких агрегатов настолько мал, что его возможно устанавливать на крышах зданий и обеспечивать их за счёт этого автономным электроснабжением. Или же возможно обеспечить электроэнергией объект в горах, куда не проложена линия электропередачи. Увеличение мощности до сколь угодно большой величины достижимо тиражированием таких агрегатов. То есть, ставя много однотипных установок, достигаем нужной мощности.

Техническая эффективность

Что касается технической эффективности. Наш прототип при высоте лопастей 800мм и поперечном габарите 800 мм при скорости ветра 11 м/с развил механическую мощность 225 Вт (при 75 оборотах в минуту). При этом он отстоял от поверхности земли на высоте менее метра. По данным ресурса http://www.rktp-trade.ru сопоставимую мощность (300 Вт) развивает пятилопастной вертикальный ветряк, установленный на шестиметровой мачте, причём он имеет пять 1200 мм лопастей, установленных на габаритном диаметре 2 000 мм. То есть, если принять ометаемые ветром площади сравниваемых ветряков равными, то получится, что прототип энергоэффективнее известного ветряка в 2,5…3 раза, с учётом того, что у земли ветер слабее из-за близости к граничной поверхности и имеет выраженный турбулентный характер.

Исходя из этого, зная, что описанный аналог имеет коэффициент использования энергии ветра (КИЭВ) равный 0,2, можно оценить КИЭВ прототипа как 0,48, что намного выше, чем у VAWT типа «Савониус» и «Дарье» и соответствует лучшим мировым образцам горизонтально–осевых ветрогенераторов. При этом материалоёмкость и себестоимость у прототипа намного ниже, чем у пропеллерных мачтовых ветряков, имеющих механизмы ориентации на ветер и высоко расположенную гондолу с дорогим повышающим редуктором планетарного типа.

Сравнительная оценка эффективности роторов ветровых турбин различных типов — Таблица 1.

Тип ротора Расположение оси вращения Коэффициент использования энергии ветра (КИЭВ) Источник Примеч ания
Ротор Савониуса Вертикальное 0,17 Разработан около восьмидесяти лет назад, схема — рис. 7 (д) на стр.17 упомянутого источника
Ротор Н-Дарье с широко разнесёнными лопастями Вертикальное 0,38 ТР.А. Янсон. Ветроустановки. Под редакцией М.Ж. Осипова. М.: Издательство МГТУ им. Н.Э. Баумана, 2007г., стр.23, рис.13 Разработан около века назад, схема — рис. 7 (а) на стр.17 упомянутого источника
Многолопастные сопротивления Вертикальное 0,2 Там же, а также конкретный коммерческий продукт на сайте http://www.rktp-trade.ru К этому типу относится и ротор Болотова
Двухлопостные пропеллерные Горизонтальное 0,42 Р.А. Янсон. Ветроустановки. Под редакцией М.Ж. Осипова. М.: Издательство МГТУ им. Н.Э. Баумана, 2007г., стр.23, рис.13 Самый распространённый в мире тип ветродвигателей на сегодня
Ротор нашей турбины (формально Н-Дарье, но с плотно сомкнутыми лопастями, на которых установлены наклонные антикрылья и горизонтальная крыльчатка) Вертикальное 0,48…0,5 Натурные замеры скорости ветра анемометром, крутящего момента ротора динамометром, оборотов ротора тахометром

Преимущества вертикально-осевой ветряной турбины VAWT

  • Аппарат вращается в одну и ту же сторону при любом направлении ветра. В то время как гондолы горизонтальных ветрогенераторов требуется ориентировать по ветру, что удорожает конструкцию и снижает ресурс подвижных частей механизма поворота.
  • Генерация электроэнергии в VAWT начинается при скорости ветра от 5 м/с.
  • Турбина имеет высокое аэродинамическое качество лопастей и инновационную архитектуру, позволяющую достичь коэффициента использования энергии ветра не менее 47%.
  • Турбина не нуждается в обслуживании генератора (кольцевой плоский линейный без щеток и подшипников).
  • Наращивание мощности достигается путем установки дополнительных модулей.
  • VAWT не имеет ограничений при установке вблизи жилья, не создаёт недопустимого электромагнитного и акустического излучения. Это позволяет устанавливать турбины в пределах населённых пунктов, в том числе на крышах многоэтажных зданий без ущерба ландшафтным видам.
  • VAWT абсолютно безвредна, может устанавливаться на пути миграции перелетных птиц.
  • Турбина устойчива к сильному ветру, способна выдержать даже ураганный ветер. Это достигается механизмом автоматического изменения углов атаки вертикальных лопастей турбины (рисунки приведены выше).
  • VAWT имеет легкие и простые составные части, удобные при транспортировке и монтаже.
  • Турбина защищена от воздействия молний.

На сегодня выполнена полноразмерная 3-d модель механической части турбины (с высотой вертикальных лопастей 8м), а также выполнены рабочие чертежи деталей и узлов ротора и узла его вращения. Чертежи на электрогенератор и лопасти прорабатываются с учётом максимального соответствия критерию «цена – качество».

Проект предусматривает конструирование, изготовление и испытание полноразмерного образца VAWT (высота вертикальных лопастей 8м). После чего планируется организовать промышленное производство таких установок после отладки пилотного образца, с оснащением такими установками не электрифицированных районов в сельской местности и зданий в городах.

Области применения инновационного ветрогенератора, в принципе, то же, что и у аналогов. То есть это выработка электроэнергии в местах отсутствия стационарных ее источников, а также там, где использование других способов получения электроэнергии экономически нерентабельно. В частности, это объекты спецназначения, требующие автономного энергообеспечения, например, маяки и радиомаяки, пограничные заставы и пограничные посты, автоматизированные метеорологические и аэронавигационные посты.

Энергия ветра – бесплатная, возобновляемая, безопасная энергия. Установкой, преобразующей энергию воздушных потоков в электрическую

или тепловую называют ветрогенератор. Большинство современных ветряных установок имеют сравнительно низкий КПД (до 30%) и высокую стоимость производства.

Проект турбинны ветрогенератора

Главными задачами всех ученых, занимающихся проблемами ветроэнергетики, являются снижение стоимости производства ветряков, повышение их КПД и мощности.

Классификация

Ветрогенераторы подразделяются по расположению оси вращения на конструкции с:

  • вертикальной осью (перпендикулярной земле);
  • горизонтальной осью (параллельной земле).

По материалам, из которых производят лопасти, ветряки классифицируются на:

  • жестколопастные;
  • парусные.

По числу лопастей подразделяется на:

  • генераторы с 2-мя лопастями;
  • генераторы с 3-мя лопастями;
  • многолопастные генераторы, с числом лопастей от 50-ти.

Ветрогенераторы турбинного типа относятся к категории нового поколения, их устанавливаю на крыше в виде вентиляторов и они не беспокоят соседей шумом

По типу винтового шага различают генераторы с:

  • постоянным шагом;
  • переменным шагом.

По типу конструкции:

  • лопастные;
  • турбинные.

По назначению:

  • бытовые;
  • коммерческие;
  • промышленные.

Промышленные ветряки строят, преимущественно, с горизонтальной осью вращения и жесткими лопастями.

Ветровая турбина Liam F1 Urban вырабатывает КПД 80%

Парусные ветряки и генераторы с вертикальными осями вращения часто устанавливают для снабжения энергией частных домов и малых строений.

Ветротурбинная установка – ветрогенератор, турбина которого, имеет цилиндрическую форму с установленными внутри нее лопастями. По сути, это ветряк с горизонтальной осью вращения, края лопастей которого защищены цилиндром. Отличается простой, надежной конструкцией, большим, по сравнению с лопастными ветряками, КПД.

Принципиальное отличие

Ветровая турбина представляет собой цилиндрический контур. Внутри контура располагаются вращающие лопасти. Состоит конструкция из:

  • турбины;
  • внешнего или внутреннего обтекателя;
  • обтекателя узла генератора турбины;
  • гондолы;
  • генератора;
  • инвертора;
  • аккумулирующего модуля;
  • блока управления;
  • динамического узла крепления.

Ветряки данного типа характеризуются отсутствием незащищенных лопастей вращения, а также системы, предназначенной для их регулирования и ориентирования на направление ветра. Это повышает надежность, безопасность конструкции. Цилиндрическая форма обтекателя самостоятельно разворачивается, улавливая ветер, а обтекатель, работающий как сопло, повышает мощность установки.

В зависимости от требуемой мощности и назначения, конструкция может иметь множество модификаций. Например, при изготовлении турбины могут использоваться различные материалы. Варьироваться могут геометрические размеры, способ размещения (на опору, ферму и пр.). Возможно дополнительное оснащение модулями солнечных батарей.

Прототип ветрогенератора турбинного типа для бизнеса

Ветротурбинные агрегаты выпускают бытового и промышленного назначения.

Принцип работы установки

Для нормальной работы ветровой установки турбинного типа необходим ветер, дующий со скоростью от 2 м/с до 60 м/с. Принцип работы установки такой. Агрегат самостоятельно улавливает направление ветра, поворачивается в нужную сторону. Поток воздуха попадает на лопасти, вращает их. Воздушные массы сообщают кинетическую энергию движения лопастям, где она преобразуется в энергию механическую, вращающую ротор.

Турбина ветрогенератора Российской разработки проходит испытания

Вращение ротора продуцирует трехфазный ток, поступающий на генератор. Оттуда ток идет в контроллер, где происходит его выпрямление, далее он протекает через аккумуляторы, заряжает их, затем поступает на инвертор. Инвертор выпускает однофазный переменный ток, частота его колебаний 50 Герц для сетей напряжением 220 В, либо трехфазный ток напряжением 380 В, необходимый промышленным предприятиям, а также для питания нагрузки.

Достоинства турбинной ветроустановки

Ветрогенератор турбинной конструкции имеет существенные преимущества над ветряками иных конструкций.

  1. Высокая чувствительность к ветру. Минимальная скорость ветра для приведения лопастей в движение от 2 м/с; ветрякам иного типа нужна скорость ветра от 4 м/с.
  2. Генератор способен работать при ураганных скоростях ветра (до 60 м/с). Большинство других ветряков работает до 25-30 м/с.
  3. Коэффициент полезного действия ветряного турбогенератора почти вдвое превышает КПД ветряка, имеющего незащищенные лопасти. За счет сопельной конструкции обтекателя, турбинный ветряк значительно мощнее агрегатов иных конструкций.
  4. Турбоустановка безопасна для птиц и летучих мышей. Ветряки с открытыми лопастями часто становятся причиной гибели летающих животных, которые не способны определить границы опасной зоны. Ветроустановку турбинной конструкции летучие мыши и птицы идентифицируют как единое препятствие и успешно ее огибают.
  5. Ветряки большинства конструкций производят много шума, при определенных скоростях ветра генерируют инфразвук, поэтому их нельзя ставить вблизи жилых домов, ферм, лесных хозяйств. Турбинные установки не продуцируют инфразвук, губительный для людей и животных. Их можно устанавливать рядом с жилым домом. Турбинные ветряки не провоцируют искусственную миграцию животных.
  6. Меньшая, по сравнению с лопастными, стоимость производства. Изготовление свободных лопастей – сложный, дорогостоящий процесс. Их отсутствие заметно удешевляет и упрощает производство установки.
  7. Легкость и быстрота монтажа. Комплектующие турбогенератора производят на заводе; там же осуществляется сборка основных блоков. Установка включает лишь компоновку, соединение блоков, крепление ее к опоре. Монтаж происходит при помощи стандартных подъемников.
  8. Легкость обслуживания. Сервисное обслуживание турбинных ветряков значительно проще и дешевле, чем лопастных. При правильной эксплуатации установки, периодическом грамотном сервисном обслуживании, срок эксплуатации достигает 50 лет.
  9. Ветросиловая установка турбинного типа, в отличие от классических ветряков, не мешает летчикам и диспетчерам летных служб, не обнаруживается радарами ПВО, не создает угрозы национальной безопасности.

Область применения

Максимального КПД ветротурбинный генератор достигает вблизи природных водоемов из-за почти круглогодичного движения воздуха и высокой чувствительности к ветру. И также его устанавливают в городах, поселках. Конструкция установки позволяет пользоваться генератором для автономного или комбинированного освещения частных домов и дач.

Полезен ветрогенератор в населенных пунктах, расположенных вдали от городов, райцентров, где часто случаются перебои с электричеством. Ветротурбинную установку можно использовать вблизи аэродромов, военных полигонов. Оставаясь невидимой для радаров, она не несет опасности для пилотов и систем национальной безопасности.