Уравнение прямой, проходящей через две точки. Уравнение прямой проходящей через две точки

у - у 1 =k(х - х 1)

уравнение прямой: у=kх+в

Если мы преобразуем первоначальное уравнение у - у 1 =k(х - х 1), то получим у=kх+(у 1 -kх 1) Оно удовлетворяет условия уравнения прямой: у=kх+в, т.к.

1. его степень первая, а значит оно может быть прямой,

2. прямая проходит через точку (х 1 ; у 1), т.к. координаты этой точки удовлетворяют уравнению: 0=0

3. роль коэфициента в играет выражение у 1 -kх 1

Прямая с уравнением у - у 1 =k(х - х 1) проходит через 1 точку. Потребуем, что бы и вторая точка лежала на этой прямой, т.е. что бы выполнялось равенство у 2 - у 1 =k(х 2 - х 1). Отсюда находим k= у 2 - у 1 ¸ х 2 - х 1 и подставим в уравнение:

у - у 1 = у 2 - у 1 ¸ х 2 - х 1 ×(х - х 1) или

х - х 1 ¸х 2 - х 1 = у - у 1 ¸у 2 - у 1

15.Угол м/у прямыми на плоскости

Прямые: у=k 1 х +в 1 , у=k 2 х +в 2

В тр-ке АВС сумма внутр. углов a 1 +b равна внешнему углу a 2 поэтому b=a 2 -a 1 Очевидно, tga 1 = k 1 ; tga 2 = k 2 .Проименяя формулу для tg разности 2х углов получим tgb=tg(a 2 -a 1)= tga 2 -tga 1 ¸1+ tga 2 ×tga 1

Окончательно имеем tgb= k 2 - k 1 ¸1+k 2 × ×k 1 Вычислив тангенс можно найти и сам угол b.

16. Условия || и ^ прямых на плоскости.


Даны уравнения прямых с угловым коэф. у=k 1 х и у=k 2 х +в 2

Условия || прямых -это равенство угловых коэф. к 1 =к 2 (1)

Условие (1) выполн. и для слившихся прямых. Формулу углового коэф. прямых (tga= k 2 - k 1 ¸1+k 2 × ×k 1) можно записать ввиде: ctga= 1+k 2 × ×k 1 ¸k 2 - k 1 (это в сслучае, если к 1 ¹к 2). Условие ^ прямых выражается равенством k 2 × ×k 1 = -1. Если к 1 =0 или к 2 =0, то одна из прямых || оси Ох, а вторая ей ^, имеет уравнение вида х=а.

Пусть прямые заданы общим уравнением. А 1 х+В 1 у+С 1 =0, А 2 х+В 2 у+С 2 =0, Если В1=В2=0, то обе прямые параллельны оси Оу и между собой (их уравнения имеют вид х=а) Если В1=0, а В2¹0, то прямые^. В случае когда А2=0 (уравнение приводится к виду х=а, у=в)В случае В1¹0 и В2¹0можно выразить у в каждом уравнении. у= -А1х¸В1-С1¸В1;

У= - А2х¸В2-С2¸В2, тогда к1= -А1¸В1, а к2= - А2¸В2 и условие || А1¸В1= А2¸В2 или А1¸А2= В1¸В2.

С помощью равенства 1+к1×к2=0, 1+ А1¸В1× А2¸В2=0. Приходим к условию ^прямых А1×А2+В1×В2=0.

Эллипс

Эллипсом называется геометрическое место точек плоскости, сумма расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная (большая расстояния между фокусами)

Уравнение элипса примет самый простой вид, если фокусы разместить на оси Ох слева от начала координат на равном от него расстоянии. F 1 F 2 - фокусы эллипса. Обозначим F 1 F 2 = 2c тогда фокусы имеют координаты (-с,0) и (с,0). Расстояния о фокусов до текущей точки эллипса М обозначим r 1 и r 2 . Их называют фокальными радиусами. Постоянную величину r 1 + r 2 обозначим 2а: r 1 + r 2 =2а. помещая точку М в точки и А" легко сообразить, что А"А = 2а. Отрезки AA" и ВВ" называются осями эллипса, а отрезки ОА и ОВ - полуосями эллипса. Точки А,А",В,В" называют вершинами эллипса. Пусть М(х,у)находится в точке В, тогда r 1 = r 2 =а. Из тр-ка ВОF 2 ВО=ÖBF 2 2 -OF 2 2 Обозначим ВО=в, тогда в=Öа 2 - с 2 . Через полуосиэллипса а и в уравнение запишится так:

Это уравнение называют каноническим уравнением эллипса. Окружность - частный случай эллипса, получается при а=в=R(R - радикс окружности). Чем больше отличаются друг от друга полуоси а и в, тем более сплюснутым будет эллипс. Степень сплюснутости эллипса принято измерять эксцентриситетом

Очевидно, 0£ɛ£1. При ɛ=0 имеем окружность, с увеличением ɛэллипс все больше отличается от окружности, становясь более выпуклым.

Гипербола

Гиперболой называется геом. место точек плоскости, для которых абсолютная величина разности расстояний до двух данный точек, называемых фокусами, есть величина посоянная, не равная 0 и меньшая расстояния между фокусами. Фокусы F 1 и F 2 снова расположим на оси Ох в точках (-с,0), (с,0). Отрезки F 1 М = r 1 и F 2 М = r 2 называют фокальными радиусами. По определению |r 1 - r 2 | есть величина постоянная. Обозначим ее 2а: |r 1 - r 2 | =2а. Точки А и А" называют вершинами гиперболы. Легко понять, что АА" =2а. Действительно, для точки А r 1 =АF 1 а r 2 =АF 2 . Очевидно, АF 2 =А"F 1 ,поэтому r 1 - r 2 = АF 1 -АF 2 = АF 1 =А"F 1 = А"A. С другой стороны r 1 - r 2 =2а. Отрезок АА" называют действительной осью гиперболы. Пусть в=Öс 2 -а 2 Точки В и В" имеют координаты(0,в) и (0,-в). отрезок ВВ" называют мнимой осью гиперболы. Канонической уравнение гиперболы имеет вид:

у гиперболы 2 ветви, при а=в гиперола называется равнобочной. Уравнения у=вх¸а и у=-вх¸а. Они называются асимптотами. Если точка удаляется по любой из ветвей гиперболы, то ее расстояние до соответствующей асимптоты стремиться к 0. Для гиперболы эксцентриситет принимает зн-ия большие 1.

Парабола.

Параболой называется геометрическое место точек плоскости, равноудаленных от данной прямой, называемой директрисой, и от данной точки, не принадлежащей директрисе, называемой фокусом. Обозначим расстояние между фокусом и директрисой через р. Канонической уравнение параболы имеет вид:

у 2 =2рх и получается, если фокус F поместить в точку (р¸2, 0), а в качестве директрисы взять прямую х = - р¸2. Число р называют параметром параболы, точку (0,0) - ее вершиной.

20. Плоскость в пространстве: общее уравнение, геометрический смысл коэфициентов, уравнение плоскости., проходящей через заданную точку пространства.

Общее уравнение плоскости: Ах+Ву+Сz +D=0, в котором хотя бы один из коэффициентов А,В,С отличен от 0. Эти коэффициенты имеют опред. Геом. смысл

Зададим положение плоскости с помощью некоторой точки М 0 (х 0 ,у 0 ,z 0) и ненулевого вектора N(А,В,С), перпендекулярного плоскости. По этим данным плоскость определяется однозначно. Пусть М(х,у,z) - текущая точка плоскости. Векторы N(А,В,С) и М 0 М(х-х 0 ,у-у 0 ,z-z 0) ортогональны, поэтому их скалярное произведение равно)

А(х-х 0)+В(у-у 0)+С(z-z 0)=0 (1)

После преобразований получаем уравнение:

Ах+Ву+Сz+D=0, где D = -Ах 0 -В 0- Сz 0

Следовательно, А,В,С - координаты вектора, перпендекулярного плоскости, заданной общим уравнением.

Множество плоскостей, описываемых уравнением (1), при фиксированной точке (х 0 ,у 0 ,z 0) и переменных коэфициентах А,В,С называются связкой плоскостей. Когда среди условий, задающих искомую плоскость, значится ее точка М 0 (х 0 ,у 0 ,z 0), можно начинать решение задачи с применения уравнения (1). Плоскость так же называют поверностью первого порядка.

Сфера,

Сфера . Уравнение сферы, центр которой находится в начале координат: х 2 +у 2 +z 2 =R 2 . Пусть теперь центр расположен в точке М 0 (х 0 ,у 0 ,z 0)

Текущая точка М(х,у,z) сферы находится на расстоянии R от т. М.

Из равенства ММ 0 2 =R 2 получаем: (х-х 0) 2 +(у-у 0) 2 +(z-z 0) 2 =R 2

Эллипсоид канонич. уравнение:

А,в,с - полуоси эллипсоида. При а=в получается эллипсоид вращения. Такую форму имеет поверхность нашей планеты. При а=в=с эллипсоид превращается в сферы радиуса R=а

Параболоид вращения

В плоскости уОz рассмотрим параболу у 2 =2рz. Поверхность, образованная вращением этой параболы вокруг оси Oz называется параболоидом вращения.

Пусть М(х,у,z) - произвольная точка поверхности, а М 0 - точка с той же аппликатой z, лежащая на параболе у 2 =2рz. Т.к. О"М=О" М 0 , то у 2 для точки М 0 можно заменить в уравнении на х 2 +у 2 для точки М: х 2 +у 2 =2рz - уравнение параболоида вращения

Уравнение прямой, проходящей через т.у А(ха; уа) и имеющей угловой коэффициент k, записывается в виде

у – уа=k (x – xa). (5)

Уравнение прямой, проходящей через две точки т. А (х 1 ; у 1) и т.В (х 2 ; у 2) , имеет вид

Если точки А и В определяют прямую, параллельную оси Ох (у 1 = у 2) или оси Оу (х 1 = х 2), то уравнение такой прямой записывается соответственно в виде:

у = у 1 или х = х 1 (7)

Нормальное уравнение прямой

Пусть дана прямая С, проходящая через данную точку Мо(Хо; Уо) и перпендикулярная вектору (А;В). Любой вектор , перпендикулярный данной прямой , называется ее нормальным вектором. Выберем на прямой произвольную т. М(х;у). Тогда , а значит их скалярное произведение . Это равенство можно записать в координатах

А(х-х о)+В(у-у о)=0 (8)

Уравнение (8) называется нормальным уравнением прямой .

Параметрическое и каноническое уравнения прямой

Пусть прямая l задана начальной точкой М 0 (х 0 ; у 0) и направляющим вектором (а 1 ;а 2 ),. Пусть т. М(х; у) – любая точка, лежащая на прямой l . Тогда вектор коллинеарен вектору . Следовательно, = . Записывая это уравнение в координатах, получаем параметрическое уравнение прямой

Исключим параметр t из уравнения (9). Это возможно, так как вектор , и потому хотя бы одна из его координат отлична от нуля.

Пусть и , тогда , и, следовательно,

Уравнение (10) называется каноническим уравнением прямой с направляющим вектором

=(а 1 ; а 2). Если а 1 =0 и , то уравнения (9) примут вид

Этими уравнениями задается прямая, параллельная оси, Оу и проходящая через точку

М 0 (х 0 ; у 0).

х=х 0 (11)

Если , , то уравнения (9) примут вид

Этими уравнениями задается прямая, параллельная оси Ох и проходящая через точку

М 0 (х 0 ; у 0). Каноническое уравнение такой прямой имеет вид

у=у 0 (12)

Угол между прямыми. Условие параллельности и перпендикулярности двух

Прямых

Пусть даны две прямые, заданные общими уравнениями:

и

Тогда угол φ между ними определяется по формуле:

(13)

Условие параллельности 2-х прямых: (14)

Условие перпендикулярности 2-х прямых: (15)

Условие параллельности в этом случае имеет вид: (17)

Условие перпендикулярности прямых: (18)

Если две прямые заданы каноническими уравнениями:

и

то угол φ между этими прямыми определяется по формуле:

(19)

Условие параллельности прямых: (20)

Условие перпендикулярности прямых: (21)



Расстояние от точки до прямой

Расстояние d от точки М(х 1 ; у 1) до прямой Ax+By+C=0 вычисляется по формуле

(22)

Пример по выполнению практической работы

Пример 1. Построить прямую 3х– 2у +6=0.

Решение:Для построения прямой достаточно знать какие-либо две её точки, например, точки её пересечения с осями координат. Точку А пересечения прямой с осью Ох можно получить, если в уравнении прямой принять у=0.Тогда имеем 3х +6=0, т.е. х =-2. Таким образом, А (–2;0).

Тогда В пересечения прямой с осью Оу имеет абсциссу х =0; следовательно, ордината точки В находится из уравнения –2у+ 6=0, т.е. у=3. Таким образом, В (0;3).

Пример 2. Составить уравнение прямой, которая отсекает на отрицательной полуплоскости Оу отрезок, равный 2 единицам, и образует с осью Ох угол φ =30˚.

Решение: Прямая пересекает ось Оу в точке В (0;–2) и имеет угловой коэффициент k =tg φ= = . Полагая в уравнении (2) k = и b = –2, получим искомое уравнение

Или .

Пример 3. А (–1; 2) и

В (0;–3). (указание : угловой коэффициент прямой находится по формуле (3))

Решение: .Отсюда имеем . Подставив в это уравнение координаты т.В, получим: , т.е. начальная ордината b = –3 . Тогда получим уравнение .

Пример 4. Общее уравнение прямой 2х – 3у – 6 = 0 привести к уравнению в отрезках.

Решение: запишем данное уравнение в виде 2х – 3у =6 и разделим обе его части на свободный член: . Это и есть уравнение данной прямой в отрезках.

Пример 5. Через точку А (1;2) провести прямую, отсекающую на положительных полуосях координат равные отрезки.

Решение: Пусть уравнение искомой прямой имеет вид По условию а =b . Следовательно, уравнение принимает вид х + у = а . Так как точка А (1; 2) принадлежит этой прямой, значит ее координаты удовлетворяют уравнению х + у = а ; т.е. 1 + 2 = а , откуда а = 3. Итак, искомое уравнение записывается следующим образом: х + у = 3, или х + у – 3 = 0.

Пример 6. Для прямой написать уравнение в отрезках. Вычислить площадь треугольника, образованного этой прямой и осями координат.



Решение: Преобразуем данное уравнение следующим образом: , или .

В результате получим уравнение , которое и является уравнением данной прямой в отрезках. Треугольник, образованный данной прямой и осями координат, является прямоугольным треугольником с катетами, равными 4 и 3, поэтому его площадь равна S= (кв. ед.)

Пример 7. Составить уравнение прямой, проходящий через точку (–2; 5) и образующей с осью Ох угол 45º.

Решение: Угловой коэффициент искомой прямой k = tg 45º = 1. Поэтому, воспользовавшись уравнением (5), получаем у – 5 = x – (–2), или х – у + 7 = 0.

Пример 8. Составить уравнение прямой, проходящей через точки А (–3; 5)и В( 7; –2).

Решение: Воспользуемся уравнением (6):

, или , откуда 7х + 10у – 29 = 0.

Пример 9. Проверить, лежат ли точки А (5; 2), В (3; 1) и С (–1; –1) на одной прямой.

Решение: Составим уравнение прямой, проходящей через точки А и С :

, или

Подставляя в это уравнение координаты точки В (хВ = 3 и у В = 1), получим (3–5) / (–6)= = (1–2) / (–3), т.е. получаем верное равенство. Т. о., координаты точки В удовлетворяют уравнению прямой (АС ), т.е. .

Пример 10: Составить уравнение прямой, проходящую через т. А(2;-3).

Перпендикулярную =(-1;5)

Решение: Пользуясь формулой (8), находим уравнение данной прямой -1(х-2)+5(у+3)=0,

или окончательно, х – 5 у - 17=0.

Пример 11 : Даны точки М 1 (2;-1) и М 2 (4; 5). Написать уравнение прямой, проходящей через точку М 1 перпендикулярно вектору Решение: Нормальный вектор искомой прямой имеет координаты (2;6), следовательно по формуле (8) получим уравнение 2(х-2)+6(у+1)=0 или х+3у +1=0.

Пример 12 : и .

Решение: ; .

Пример 13:

Решение: а) ;

Пример 14: Вычислить угол между прямыми

Решение:

Пример 15: Выяснить взаимное расположение прямых:

Решение:

Пример 16: найти угол между прямыми и .

Решение: .

Пример 17: выяснить взаимное расположение прямых:

Решение:а) - прямые параллельны;

б) - значит, прямые перпендикулярны.

Пример 18: Вычислить расстояние от точки М(6; 8) до прямой

Решение: по формуле (22) получим: .

Задания для практического занятия:

Вариант 1

1. Привести общее уравнение прямой 2x+3y-6=0 к уравнению в отрезках и вычислить площадь треугольника, отсекаемого этой прямой от соответствующего координатного угла;

2. В ∆ABC вершины имеют координаты точки А (-3;4), точки В (-4;-3), точки С (8;1). Составить уравнения стороны (AB), высоты (ВК) и медианы (CМ);

3. Вычислить угловой коэффициент прямой, проходящей через точку М 0 (-2;4) и параллельной вектору (6;-1);

4. Вычислить угол между прямыми

4. Вычислить угол между прямыми:

а) 2x - 3y + 7 = 0 и 3x - y + 5 = 0 ; б) и y = 2x – 4;

5.Определить взаимное расположение 2-х прямых и ;

, если известны координаты концов отрезка т.А(18;8) и т.В(-2; -6).

Вариант 3

1. Привести общее уравнение прямой 4x-5y+20=0 к уравнению в отрезках и вычислить площадь треугольника, отсекаемого этой прямой от соответствующего координатного угла;

2. В ∆ABC вершины имеют координаты точки А (3;-2), точки В (7;3), точки

С (0;8). Составить уравнения стороны (AB), высоты (ВК) и медианы (CМ);

3. Вычислить угловой коэффициент прямой, проходящей через точку M 0 (-1;-2) и

параллельной вектору (3;-5);

4. Вычислить угол между прямыми

а) 3x + y - 7 = 0 и x - y + 4 = 0; б) и ;

5. Определить взаимное расположение 2-х прямых и y = 5x + 3;

6. Вычислить расстояние от середины отрезка АВ до прямой , если известны координаты концов отрезка т.А(4;-3) и т.В(-6; 5).

Вариант 4

1. Привести общее уравнение прямой 12x-5y+60=0 к уравнению в отрезках и вычислить длину отрезка, который отсекается от этой прямой соответствующим координатным углом;

2. В ∆ABC вершины имеют координаты точки А (0;-2), точки В (3;6), точки С (1;-4). Составить уравнения стороны (AB), высоты (ВК) и медианы (CМ);

3. Вычислить угловой коэффициент прямой, проходящей через точку M 0 (4;4) и параллельной вектору (-2;7);

4.Вычислить угол между прямыми

а) x +4 y + 8 = 0 и 7x - 3y + 5 = 0; б) и ;

5. Определить взаимное расположение 2-х прямых и ;

6. Вычислить расстояние от середины отрезка АВ до прямой , если известны координаты концов отрезка т.А(-4; 8) и т.В(0; 4).

Контрольные вопросы

1. Назовите уравнения прямой на плоскости, когда известны точка, через которую она проходит и ее направляющий вектор;

2. Какой вид имеет нормальное, общее уравнения прямой на плоскости;

3. Назовите уравнение прямой, проходящей через две точки, уравнение прямой в отрезках, уравнение прямой с угловым коэффициентом;

4. Перечислите формулы для вычисления угла между прямыми, заданными уравнениями с угловым коэффициентом. Сформулируйте условия параллельности и перпендикулярности двух прямых.

5. Как найти расстояние от точки до прямой?

Уравнение прямой проходящей через две точки. В статье " " я обещал вам разобрать второй способ решения представленных задач на нахождение производной, при данном графике функции и касательной к этому графику. Этот способ мы разберём в , не пропустите! Почему в следующей?

Дело в том, что там будет использоваться формула уравнения прямой. Конечно, можно было бы просто показать данную формулу и посоветовать вам её выучить. Но лучше объяснить – от куда она исходит (как выводится). Это необходимо! Если вы её забудете, то быстро восстановить её не представит труда. Ниже подробно всё изложено. Итак, у нас на координатной плоскости имеется две точки А (х 1 ;у 1) и В(х 2 ;у 2), через указанные точки проведена прямая:

Вот сама формула прямой:


*То есть при подстановке конкретных координат точек мы получим уравнение вида y=kx+b.

**Если данную формулу просто «зазубрить», то имеется большая вероятность запутаться с индексами при х . Кроме того, индексы могут обозначаться по разному, например:

Поэтому-то и важно понимать смысл.

Теперь вывод этой формулы. Всё очень просто!


Треугольники АВЕ и ACF подобны по острому углу (первый признак подобия прямоугольных треугольников). Из этого следует, что отношения соответственных элементов равны, то есть:

Теперь просто выражаем данные отрезки через разность координат точек:

Конечно, не будет никакой ошибки если вы запишите отношения элементов в другом порядке (главное соблюдать соответствие):

В результате получится одно и тоже уравнение прямой. Это всё!

То есть, как бы не были обозначены сами точки (и их координаты), понимая данную формулу вы всегда найдёте уравнение прямой.

Формулу можно вывести используя свойства векторов, но принцип вывода будет тот же, так как речь будет идти о пропорциональности их координат. В этом случае работает всё то же подобие прямоугольных треугольников. На мой взгляд описанный выше вывод более понятнее)).

Посмотреть вывод через координаты векторов >>>

Пусть на координатной плоскости построена прямая, проходящая через две заданные точки А(х 1 ;у 1) и В(х 2 ;у 2). Отметим на прямой произвольную точку С с координатами (x ; y ). Также обозначим два вектора:


Известно, что у векторов лежащих на параллельных прямых (либо на одной прямой), их соответствующие координаты пропорциональны, то есть:

— записываем равенство отношений соответствующих координат:

Рассмотрим пример:

Найти уравнение прямой, проходящей через две точки с координатами (2;5) и (7:3).

Можно даже не строить саму прямую. Применяем формулу:

Важно, чтобы вы уловили соответствие, при составлении соотношения. Вы не ошибётесь, если запишите:

Ответ: у=-2/5x+29/5 иди у=-0,4x+5,8

Для того, чтобы убедится, что полученное уравнение найдено верно, обязательно делайте проверку — подставьте в него координаты данных в условии точек. Должны получится верные равенства.

На этом всё. Надеюсь, материал был вам полезен.

С уважением, Александр.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Пусть прямая проходит через точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2). Уравнение прямой, проходящей через точку М 1 , имеет вид у- у 1 = k (х - х 1), (10.6)

где k - пока неизвестный коэффициент.

Так как прямая проходит через точку М 2 (х 2 у 2), то координаты этой точки должны удовлетворять уравнению (10.6): у 2 -у 1 = k (х 2 -х 1).

Отсюда находим Подставляя найденное значениеk в уравнение (10.6), получим уравнение прямой, проходящей через точки М 1 и М 2:

Предполагается, что в этом уравнении х 1 ≠ х 2 , у 1 ≠ у 2

Если х 1 = х 2 , то прямая, проходящая через точки М 1 (х 1 ,у I) и М 2 (х 2 ,у 2) параллельна оси ординат. Ее уравнение имеет вид х = х 1 .

Если у 2 = у I , то уравнение прямой может быть записано в виде у = у 1 , прямая М 1 М 2 параллельна оси абсцисс.

Уравнение прямой в отрезках

Пусть прямая пересекает ось Ох в точке М 1 (а;0), а ось Оу – в точке М 2 (0;b). Уравнение примет вид:
т.е.
. Это уравнение называетсяуравнением прямой в отрезках, т.к. числа а и b указывают, какие отрезки отсекает прямая на осях координат .

Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору

Найдем уравнение прямой, проходящей через заданную точку Мо (х О; у о) перпендикулярно данному ненулевому вектор n = (А; В).

Возьмем на прямой произвольную точку М(х; у) и рассмотрим вектор М 0 М (х - х 0 ; у - у о) (см. рис.1). Поскольку векторы n и М о М перпендикулярны, то их скалярное произведение равно нулю: то есть

А(х - хо) + В(у - уо) = 0. (10.8)

Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору .

Вектор n= (А; В), перпендикулярный прямой, называется нормальным нормальным вектором этой прямой .

Уравнение (10.8) можно переписать в виде Ах + Ву + С =0 , (10.9)

где А и В координаты нормального вектора, С = -Ах о - Ву о - свободный член. Уравнение (10.9) есть общее уравнение прямой (см. рис.2).

Рис.1 Рис.2

Канонические уравнения прямой

,

Где
- координаты точки, через которую проходит прямая, а
- направляющий вектор.

Кривые второго порядка Окружность

Окружностью называется множество всех точек плоскости, равноотстоящих от данной точки, которая называется центром.

Каноническое уравнение круга радиуса R с центром в точке
:

В частности, если центр кола совпадает с началом координат, то уравнение будет иметь вид:

Эллипс

Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух заданных точек и, которые называются фокусами, есть величина постоянная
, большая чем расстояние между фокусами
.

Каноническое уравнение эллипса, фокусы которого лежат на оси Ох, а начало координат посредине между фокусами имеет вид
где
a длина большой полуоси; b– длина малой полуоси (рис. 2).

Пусть даны две точки М (Х 1 ,У 1) и N (Х 2, y 2). Найдем уравнение прямой, проходящей через эти точки.

Так как эта прямая проходит через точку М , то согласно формуле (1.13) ее уравнение имеет вид

У Y 1 = K (X – x 1),

Где K – неизвестный угловой коэффициент.

Значение этого коэффициента определим из того условия, что искомая прямая проходит через точку N , а значит, ее координаты удовлетворяют уравнению (1.13)

Y 2 – Y 1 = K (X 2 – X 1),

Отсюда можно найти угловой коэффициент этой прямой:

,

Или после преобразования

(1.14)

Формула (1.14) определяет Уравнение прямой, проходящей через две точки М (X 1, Y 1) и N (X 2, Y 2).

В частном случае, когда точки M (A , 0), N (0, B ), А ¹ 0, B ¹ 0, лежат на осях координат, уравнение (1.14) примет более простой вид

Уравнение (1.15) называется Уравнением прямой в отрезках , здесь А и B обозначают отрезки, отсекаемые прямой на осях (рисунок 1.6).

Рисунок 1.6

Пример 1.10. Составить уравнение прямой, проходящей через точки М (1, 2) и B (3, –1).

. Согласно (1.14) уравнение искомой прямой имеет вид

2(Y – 2) = -3(X – 1).

Перенося все члены в левую часть, окончательно получаем искомое уравнение

3X + 2Y – 7 = 0.

Пример 1.11. Составить уравнение прямой, проходящей через точку М (2, 1) и точку пересечения прямых X + Y – 1 = 0, Х – у + 2 = 0.

. Координаты точки пересечения прямых найдем, решив совместно данные уравнения

Если сложить почленно эти уравнения, получим 2X + 1 = 0, откуда . Подставив найденное значение в любое уравнение, найдем значение ординаты У :

Теперь напишем уравнение прямой, проходящей через точки (2, 1) и :

или .

Отсюда или –5(Y – 1) = X – 2.

Окончательно получаем уравнение искомой прямой в виде Х + 5Y – 7 = 0.

Пример 1.12. Найти уравнение прямой, проходящей через точки M (2,1) и N (2,3).

Используя формулу (1.14), получим уравнение

Оно не имеет смысла, так как второй знаменатель равен нулю. Из условия задачи видно, что абсциссы обеих точек имеют одно и то же значение. Значит, искомая прямая параллельна оси ОY и ее уравнение имеет вид: x = 2.

Замечание . Если при записи уравнения прямой по формуле (1.14) один из знаменателей окажется равным нулю, то искомое уравнение можно получить, приравняв к нулю соответствующий числитель.

Рассмотрим другие способы задания прямой на плоскости.

1. Пусть ненулевой вектор перпендикулярен данной прямой L , а точка M 0(X 0, Y 0) лежит на этой прямой (рисунок 1.7).

Рисунок 1.7

Обозначим М (X , Y ) произвольную точку на прямой L . Векторы и Ортогональны. Используя условия ортогональности этих векторов, получим или А (X X 0) + B (Y Y 0) = 0.

Мы получили уравнение прямой, проходящей через точку M 0 перпендикулярно вектору . Этот вектор называется Вектором нормали к прямой L . Полученное уравнение можно переписать в виде

Ах + Ву + С = 0, где С = –(А X 0 + By 0), (1.16),

Где А и В – координаты вектора нормали.

Получим общее уравнение прямой в параметрическом виде.

2. Прямую на плоскости можно задать так: пусть ненулевой вектор параллелен данной прямой L и точка M 0(X 0, Y 0) лежит на этой прямой. Вновь возьмем произвольную точку М (Х , y) на прямой (рисунок 1.8).

Рисунок 1.8

Векторы и коллинеарны.

Запишем условие коллинеарности этих векторов: , где T – произвольное число, называемое параметром. Распишем это равенство в координатах:

Эти уравнения называются Параметрическими уравнениями Прямой . Исключим из этих уравнений параметр T :

Эти уравнения иначе можно записать в виде

. (1.18)

Полученное уравнение называют Каноническим уравнением прямой . Вектор называют Направляющим вектором прямой .

Замечание . Легко видеть, что если – вектор нормали к прямой L , то ее направляющим вектором может быть вектор , так как , т. е. .

Пример 1.13. Написать уравнение прямой, проходящей через точку M 0(1, 1) параллельно прямой 3Х + 2У – 8 = 0.

Решение . Вектор является вектором нормали к заданной и искомой прямым. Воспользуемся уравнением прямой, проходящей через точку M 0 с заданным вектором нормали 3(Х –1) + 2(У – 1) = 0 или 3Х + – 5 = 0. Получили уравнение искомой прямой.