Тепловой расчет теплообменных аппаратов. Определение запаса теплообменной поверхности и продолжительности межпромывочного периода пластинчатого водонагревателя для гвс

Теплообменный аппарат - это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

Расчет может нести в себе проектный (конструкторский) или проверочный характер.

Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации - проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

Основы теплового расчета теплообменных аппаратов

Основой для расчета теплообменников являются уравнения теплопередачи и теплового баланса.

Имеет следующий вид:

Q = F‧k‧Δt, где:

  • Q - размер теплового потока, Вт;
  • F - площадь рабочей поверхности, м2;
  • k - коэффициент передачи тепла;
  • Δt - разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором .

Как можно заметить, величина F, являющаяся целью расчета, определяется именно через уравнение теплопередачи. Выведем формулу определения F:

Уравнение теплового баланса учитывает конструкцию самого аппарата. Рассматривая его можно определить значения t1 и t2 для дальнейшего вычисления F. Уравнение выглядит следующим образом:

Q = G 1 c p 1 (t 1 вх -t 1 вых) = G 2 c p 2 (t 2 вых -t 2 вх), где:

  • G 1 и G 2 - расходы масс греющего и нагреваемого носителей соответственно, кг/ч;
  • c p 1 и c p 2 - удельные теплоемкости (принимаются по нормативным данным), кДж/кг‧ ºС.

В процессе обмена тепловой энергией носители изменяют свои температуры, то есть в устройство каждый из них входит с одной температурой, а выходит - с другой. Эти величины (t 1 вх;t 1 вых и t 2 вх;t 2 вых) являются результатом проверочного расчета, с которым сравниваются фактические температурные показатели теплоносителей.

Вместе с тем большое значение имеют коэффициенты теплоотдачи несущих сред, а также особенности конструкции агрегата. При детальных конструкторских расчетах составляются схемы теплообменных аппаратов, отдельным элементом которых являются схемы движения теплоносителей. Сложность расчета зависит от изменения коэффициентов теплопередачи k на рабочей поверхности.

Для учета этих изменений уравнение теплопередачи принимает дифференциальный вид:

Такие данные, как коэффициенты теплоотдачи носителей, а также типовые размеры элементов при конструировании аппарата или при проверочном расчете, учитываются в соответствующих нормативных документах (ГОСТ 27590).

Пример расчета

Для большей наглядности представим пример конструкторского расчета теплообмена. Этот расчет имеет упрощенный вид, и не учитывает потерь теплоты и особенностей конструкции теплообменного аппарата.

Исходные данные:

  • Температура греющего носителя при входе t 1 вх = 14 ºС;
  • Температура греющего носителя при выходе t 1 вых = 9 ºС;
  • Температура нагреваемого носителя при входе t 2 вх = 8 ºС;
  • Температура нагреваемого носителя при выходе t 2 вых = 12 ºС;
  • Расход массы греющего носителя G 1 = 14000 кг/ч;
  • Расход массы нагреваемого носителя G 2 = 17500 кг/ч;
  • Нормативное значение удельной теплоемкости с р =4,2 кДж/кг‧ ºС;
  • Коэффициент теплопередачи k = 6,3 кВт/м 2 .

1) Определим производительность теплообменного аппарата с помощью уравнения теплового баланса:

Q вх = 14000‧4,2‧(14 - 9) = 294000 кДж/ч

Q вых = 17500‧4,2‧(12 - 8) = 294000 кДж/ч

Qвх = Qвых. Условия теплового баланса выполняются. Переведем полученную величину в единицу измерения Вт. При условии, что 1 Вт = 3,6 кДж/ч, Q = Qвх = Qвых = 294000/3,6 = 81666,7 Вт = 81,7 кВт.

2) Определим значение напора t. Он определяется по формуле:

3) Определим площадь поверхности теплообмена с помощью уравнения теплопередачи:

F = 81,7/6,3‧1,4 = 9,26 м2.

Как правило, при проведении расчета не все идет гладко, ведь необходимо учитывать всевозможные внешние и внутренние факторы, влияющие на процесс обмена теплом:

  • особенности конструкции и работы аппарата;
  • потери энергии при работе устройства;
  • коэффициенты теплоотдачи тепловых носителей;
  • различия в работе на разных участках поверхности (дифференциальный характер) и т.д.

Для наиболее точного и достоверного расчета инженер должен понимать сущность процесса передачи тепла от одного тела к другому. Также он должен быть максимально обеспечен необходимой нормативной и научной литературой, поскольку в расчете на множество величин составлены соответствующие нормы, которых специалист обязан придерживаться.

Выводы

Что мы получаем в результате расчета и в чем его конкретное применение?

Допустим, что на предприятие поступил заказ. Необходимо изготовить тепловой аппарат с заданной поверхностью теплообмена и производительностью. То есть перед предприятием не стоит вопрос размеров аппарата, но стоит вопрос материалов, которые обеспечат нужную производительность с заданной рабочей площадью.

Для решения данного вопроса производится тепловой расчет, то есть определяются температуры теплоносителей на входе и выходе из аппарата. Исходя из этих данных выбираются материалы для изготовления элементов устройства.

В конечном итоге, можно сказать, что рабочая площадь и температура носителей на входе и выходе из аппарата - основные взаимосвязанные показатели качества работы теплообменной машины. Определив их путем теплового расчета инженер сможет разработать основные решения для конструирования, ремонта, контроля и поддержания работы теплообменников.

В следующей статье мы рассмотрим назначение и особенности , поэтому подписывайтесь на нашу e-mail рассылку и новости в соц сетях, чтобы не пропустить анонс.

Cтраница 1


Запас поверхности теплообмена не должен превышать 20 / всей площади. Чрезмерный запас теплопередающей поверхност приводит к пульсирующей подаче парожидкостной смеси из рибой лера в колонну, что иногда является причиной резкого снижени коэффициента полезного действия колонны.  

Для создания запаса поверхности теплообмена длина может быть увеличена. Кроме того, должно быть учтено увеличение длины за счет наличия на концах блока распределителей потока.  

Расчет по этой формуле дает запас поверхности теплообмена. При хорошем газораспределительном устройстве он может быть излишним.  

Расчет по этой формуле дает запас поверхности теплообмена. При хорошем газораспределительном устройстве ои может быть излишним.  

Число звеньев принимаем i 7, при этом будет некоторый запас поверхности теплообмена.  

Принимаем число звеньев г 7; при этом будет некоторый запас поверхности теплообмена.  


При больших скоростях движения пара (ип10 м [ сек, точнее рд 30 если пар движется сверху вниз - теплоотдача увеличивается и расчет по формулам (VII-116) - (VII-120) дает запас поверхности теплообмена.  

В кипятильниках с малым запасом поверхности теплообмена могут возникнуть дополнительные циркуляционные потоки, для предотвращения которых следует установить ограничители между колонной и входом кипятильника.  

Ввиду того что рассчитывается реверсивный теплообменник, проходы высокого и низкого давления должны быть симметричными. Необходимо предусмотреть 20 % запас поверхности теплообмена.  

Недостаток запаса поверхности теплообмена также приводит к нарушению нормальных условий функционирования объекта. Так, конденсатор с малым запасом поверхности теплообмена характеризуется неравномерным распределением потоков и повышенным давлением инертного газа.  

Тепловой расчет аппаратов воздушного охлаждения газа выполняют по Методике теплового и аэродинамического расчета аппаратов воздушного охлаждения института ВНИИнефтемаш. В тепловом расчете принимают 10 % - ный запас поверхности теплообмена, учитывающий возможность выхода из строя отдельных вентиляторов и загрязнения поверхностей теплообмена в процессе эксплуатации.  

Перед расчетом выявляют исходные технологические данные работы колонны синтеза в конце кампании и конструктивные данные теплообменника. Далее из теплового баланса определяют разность температур на концах теплообменника и количество передаваемого тепла. Затем рассчитывают коэффициенты теплопередачи и, наконец, вычисляют необходимую длину трубок (количество их принимают, исходя из конструктивных данных) и определяют запас поверхности теплообмена. Этот запас должен быть не менее 25 % в конце кампании или не ниже 50 % в ее средней стадии.  

Недостатки проектирования ТА связаны со слишком большим или слишком малым запасом на размер поверхности теплообмена. Избыток поверхности теплообмена может привести к нарушенияем нормального функционирования аппарата. В кипятильниках запас поверхности теплообмена устраняют уменьшением разности температур, составляющей движущую силу процесса.  

Страницы:      1

Купленов Н.И. к.т.н., Мотовицкий С.В. аспирант
Тульский государственный университет

Благодаря своим достоинствам разборные пластинчатые водонагреватели (ПВН) активно вытесняют из отечественных систем теплоснабжения традиционные трубчатые теплообменники. Обеспечивая в несколько раз более высокий начальный коэффициент теплопередачи по сравнению с трубчатыми, эти теплообменники, однако гораздо «чувствительнее» к влиянию отложений накипи, термическое сопротивление которой более резко уменьшает теплопередачу .

При высоком содержании накипеобразующих солей и продуктов коррозии в воде, характерном для большинства регионов РФ, расчетный режим работы ПВН быстро нарушается, уменьшение коэффициента теплопередачи компенсируется повышением температуры греющего теплоносителя или его расхода. На практике это не всегда возможно, поэтому в подавляющем большинстве случаев необходима промывка.

Для компенсации постепенного уменьшения коэффициента теплопередачи необходим запас поверхности теплообмена ∆F.

Отечественная практика заказов ПВН по опросным листам заимствована из зарубежной без учета собственного опыта т.е. запас теплообменной поверхности или отсутствует или составляет 2-10% от расчетной чистой поверхности F 0 .

Из опыта эксплуатации скоростных водонагревателей известно, что вследствие низкого качества противонакипной обработки водопроводной воды коэффициент теплопередачи уменьшается достаточно быстро. Так, по данным при среднем качестве воды в ЦТП г. Москвы за 4 месяца эксплуатации он уменьшился на 45-50%. Из этого следует, что при неизменных начальных температурах теплоносителей требуемая температура нагрева воды может быть обеспечена лишь при 100% - ном запасе по сравнению с расчетной величиной теплообменной поверхности.

Недостаточная величина запаса ∆F обусловит короткий межпромывочный период и необходимость частой промывки водонагревателя; завышенная величина ∆F уменьшит количество промывок, но одновременно возрастут первоначальные затраты на ПВН.

Известно, что стоимость пластинчатых водонагревателей составляет основную долю затрат на оборудование теплового пункта, в то же время и затраты на химическую промывку, как показывает опыт , тоже значительны. Поэтому экономически оправдано определение поверхности теплообмена с учетом фактической интенсивности накипеобразования и необходимости ее регулярной промывки.

Основа методики такого определения заключается в обеспечении минимума годовых затрат на амортизацию запаса поверхности теплообмена ∆F и затрат на регулярную промывку водонагревателя; это условие выполняется равенством затрат

где - коэффициент амортизации ПВН, %/100; , - стоимость 1м 2 теплообменной поверхности и затрат на промывку, руб./м 2 ; - расчетная поверхность теплообмена при отсутствии накипи, м 2 ; , - продолжительность межпромывочного периода и годовой эксплуатации ПВН, сут.

При заданных начальных температурах и расходах теплоносителей, требуемый коэффициент эффективности нагрева воды при уменьшении коэффициента теплопередачи от образующейся накипи будет обеспечиваться выполнением условия

(2)

где , - коэффициенты теплопередачи при отсутствии накипи и при ее появлении.

Термическое сопротивление теплопередаче

(3)

где , - термическое сопротивление теплопередачи при чистой поверхности и термическое сопротивление слоя накипи.

После подстановки (3) в уравнение (2) получим

(5)

Подстановкой (5) в уравнение (1а) получим

Интенсивность накипеобразования определяется качеством воды, температурным и гидравлическим режимами работы ПВН. В конце межпромывочного периода сопротивление слоя накипи толщиной в соответствии с принятой математической моделью может быть рассчитано по уравнению:

где , - скорости образования и смыва накипи; - коэффициент теплопроводности накипи.

По литературным данным и выполненным исследованиям

где , - экспериментальные константы, - концентрация накипеобразующих солей в воде, кг/м 3 ; - касательное напряжение на поверхности накипи, Па; - температура воды, ˚С.

Термическое сопротивление удобно выразить в виде

где - соотношение скоростей нагреваемого «холодного» и греющего теплоносителей; - скорость холодного теплоносителя; - комплекс величин, характеризующих теплофизические характеристики теплоносителя и конструктивные особенности пластины ПВН; - термическое сопротивление стенки пластины.

Уравнение (6) после подстановки в него (7) и (10) в своей правой и левой части содержит одну неизвестную величину - продолжительность межпромывочного периода - и позволяет при заданных исходных данных определить ее целесообразное значение.

Основными экономическими факторами, определяющими величину , является стоимость 1м 2 теплообменной поверхности , и затраты на промывку , руб./м 2 .

На рис.1 приведены результаты расчетов экономически целесообразной продолжительности межпромывочного периода при скорости нагреваемого теплоносителя ω х = 0,4 м/с в зависимости от определяющих величин.

Рис.1 Зависимость экономически целесообразных относительной величины запаса теплообменной поверхности ∆F/F 0 и продолжительности межпромывочного периода τ мпр пластинчатого водонагревателя для горячего водоснабжения

Примечание:

1)Расчет производился при ω х = 0,4 м/с для пластин типа М10-BFG.

2)Исходные данные:

С=0,00357 кг/м 3 ; а м =0,19; λ н =1,05 Вт/(м·˚С); =12,7·10 -10 ; А=13374.

С повышением удельной стоимости промывки теплообменной поверхности экономически целесообразный межпромывочный период увеличивается, и приведенные зависимости позволяют получить количественную оценку продолжительности этого периода.

С другой стороны, при высокой стоимости теплообменника, что имеет место при уменьшении площади единичной пластины, величина экономически целесообразного запаса теплообменной поверхности уменьшается, конкретные величины определяющих факторов и зависимых от них величин приведены на графиках. Из этих данных следует, в частности, что для обеспечения требуемого температурного режима горячего водоснабжения даже при умеренной жесткости водопроводной воды и ежемесячной промывке запас теплообменной поверхности должен быть не менее 60% по сравнению с ее величиной при безнакипном режиме работы.

Заметим, что сопутствующее образованию накипи возрастание гидравлического сопротивления ПВН при экономически целесообразных продолжительностях межпромывочного периода несущественно, поскольку в среднем проходное сечение межпластинчатых каналов уменьшается на 4-8%.

Литература

1. Жаднов О.В. "Пластинчатые теплообменники - дело тонкое"// "Новости теплоснабжения" -2005.,-N 3.-c.39-53.

2. Чернышев Д.В. "Прогнозирование накипеобразования в пластинчатых водонагревателях для повышения надежности их работы" Дисс. к.т.н.05.23.03.- Тула, 2002. - 199с.

3. Бажан П.И., Каневец Г.Е., Селиверстов В.М. Справочник по теплообменным аппаратам. -М.: Машиностроение, 1989.

4. Чистяков Н.Н. и др. Повышение эффективности работы систем горячего водоснабжения. М., Стройиздат, 1988.

Специалисты компании «Теплообмен» на основании предоставленных индивидуальных данных производят быстрый расчет теплообменников по заявкам клиентов.

Метод расчета теплообменника

Чтобы решить задачу теплообмена, необходимо знать значение нескольких параметров. Зная их, можно определить другие данные. Самыми важными представляются шесть параметров:

  • Количество тепла, которое должно быть передано (тепловая нагрузка или мощность).
  • Температура на входе и выходе на стороне первого и второго контура теплообменника.
  • Максимально допустимые потери напора на стороне и первого, и второго контура.
  • Максимальная рабочая температура.
  • Максимальное рабочее давление.
  • Расход среды на стороне первого и второго контура.

Если расход среды, удельная теплоемкость и разность температур на одной стороне контура известны, можно рассчитать величину тепловой нагрузки.

Температурная программа

Этот термин означает характер изменения температуры среды обоих контуров между ее значениями на входе в теплообменник и выходе из него.

T1 = Температура на входе – горячая сторона

T2 = Температура на выходе – горячая сторона

T3 = Температура на входе – холодная сторона

T4 = Температура на выходе – холодная сторона

Средний логарифмический температурный напор

Средний логарифмический температурный напор (LMTD) является эффективной движущей силой теплообмена.

Если не учитывать потери тепла в окружающее пространство, которыми можно пренебречь, правомерно утверждать, что количество тепла, отданное одной стороной пластинчатого теплообменника (тепловая нагрузка) равно количеству тепла, полученному другой его стороной.

Тепловая нагрузка (P) выражается в кВт или в ккал/ч.

P = m x c p x δt,

m = Массовый расход, кг/с

c p = Удельная теплоемкость, кДж/(кг x °C)

δt = Разность температур на входе и выходе одной стороны, °C

Термическая длина

Термическая длина канала или тета-параметр (Θ) является безразмерной величиной, которая характеризует соотношение между разностью температур δt на одной стороне теплообменника и его LMTD.

Плотность

Плотностью (ρ) является масса единицы объема среды и выражается в кг/м 3 или г/дм 3 .

Расход

Этот параметр может выражаться с использованием двух различных терминов: массы или объема. Если имеется в виду массовый расход, тогда он выражается в кг/с или в кг/ч, если объемный расход, то используются такие единицы, как м 3 /ч или л/мин. Чтобы перевести объемный расход в массовый, нужно величину объемного расхода умножить на плотность среды. Выбор теплообменника для выполнения конкретной задачи обычно определяет требуемая величина расхода среды.

Потери напора

Размер пластинчатого теплообменника непосредственно зависит от величины потери напора (∆p). Если есть возможность увеличить допустимые потери напора, то можно будет использовать более компактный и, следовательно, менее дорогой теплообменник. За ориентир для пластинчатых теплообменников для рабочих жидкостей вода/вода можно считать допустимой потери напора в диапазоне от 20 до 100 кПа.

Удельная теплоемкость

Удельная теплоемкость (с p) представляет собой количество энергии, которое необходимо для повышения температуры 1 кг какого-либо вещества на 1 °C при данной температуре. Так, удельная теплоемкость воды при температуре 20 °C равна 4,182 кДж/(кг х °C) или 1,0 ккал/(кг х °C).

Вязкость

Вязкость является мерой текучести жидкости. Чем ниже вязкость, тем выше текучесть жидкости. Вязкость выражается в сантипуазах (сП) или в сантистоксах (сСт).

Коэффициент теплопередачи

Коэффициент теплопередачи теплообменника является важнейшим параметром, от которого зависит сфера применения устройства, а также его эффективность. На данную величину влияет скорость движения рабочих сред, а также особенности конструкции агрегата.

Коэффициент теплопередачи теплообменника представляет собой совокупность следующих величин:

  • теплоотдача от греющей среды к стенкам;
  • теплопередача от стенок к нагреваемой среде;
  • теплопередача водонагревателя.

Коэффициент теплопередачи теплообменника рассчитывается по определенным формулам, состав которых также зависит от вида теплообменного агрегата, его габаритов, а также от характеристик веществ, с которыми работает система. Кроме того, необходимо учитывать внешние условия эксплуатации аппаратуры – влажность, температуру и т.д.

Коэффициент теплопередачи (k) является мерой сопротивления тепловому потоку, вызываемого такими факторами, как материал пластин, количество отложений на ее поверхности, свойства жидкостей и тип используемого теплообменника. Коэффициент теплопередачи выражается в Вт/(м 2 x °C) или в ккал/(ч x м 2 x °C).

Выбор теплообменника

Каждый параметр в этих формулах может повлиять на выбор теплообменника. Выбор материалов же обычно не влияет на эффективность теплообменника, от них зависит только его прочность и стойкость к коррозии.

Применяя пластинчатый теплообменник , мы получаем преимущества в виде небольших разностей температур и малой толщины пластин, которая обычно равна от 0,3 до 0,6 мм.

Коэффициенты теплоотдачи (α1 и α2) и коэффициент загрязнения (Rf), как правило, очень малы, что объясняется высокой степенью турбулентности течения среды в обоих контурах теплообменника. Этим же обстоятельством можно объяснить и высокое значение расчетного коэффициента теплопередачи (k), которое при благоприятных условиях может достигать величины 8 000 Вт/(м 2 х °C).

В случае применения обычных кожухотрубных теплообменников величина коэффициента теплопередачи (k) не превысит значение 2 500 Вт/(м 2 х °C).

Важными факторами минимизации стоимости теплообменника являются два параметра:

1. Потери напора. Чем выше допустимая величина потерь напора, тем меньше размеры теплообменника.

2. LMTD. Чем выше разность температур жидкостей в первом и втором контуре, тем меньше размеры теплообменника.

Ограничения по давлению и температуре

Стоимость пластинчатого теплообменника зависит от максимально допустимых значений давления и температуры. Основное правило можно сформулировать следующим образом: чем ниже максимально допустимые значения рабочих температуры и давления, тем меньше стоимость теплообменника.

Загрязнение и коэффициенты

Допустимое загрязнение может быть учтено в вычислении через расчетный запас (M), то есть, за счет дополнительного процента поверхности теплообмена или введения коэффициента загрязнения (Rf), выражаемого в таких единицах, как (м 2 х °C)/Вт или (м 2 х ч х °C)/ккал.

Коэффициент загрязнения при расчете пластинчатого теплообменника должен браться значительно меньшим, чем при расчете кожухотрубного теплообменника. Для этого есть две причины.

Более высокая турбулентность потока (k) означает меньший коэффициент загрязнения.

Конструкция пластинчатых теплообменников обеспечивает гораздо более высокую степень турбулентности и, следовательно, более высокий тепловой коэффициент полезного действия (кпд), чем это имеет место в традиционных кожухотрубных теплообменниках. Обычно коэффициент теплопередачи (k) пластинчатого теплообменника (вода/вода) может составлять от 6 000 до 7 500 Вт/(м 2 х °C), в то время как традиционные кожухотрубные теплообменники при одинаковом применении обеспечивают коэффициент теплопередачи порядка лишь 2 000–2 500 Вт/(м 2 х °C). Типичное значение Rf, обычно используемое в расчетах кожухотрубных теплообменников, равно 1 х 10-4 (м 2 х °C)/Вт. В этом случае использование значения k от 2 000 до 2 500 Вт/(м 2 х °C) дает расчетный запас (M = kc х Rf) порядка 20–25 %. Чтобы получить такое же значение асчетного запаса (M) в пластинчатом теплообменнике с коэффициентом теплопередачи порядка 6 000–7 500 Вт/(м 2 х °C), надо взять коэффициент загрязнения, равный всего лишь 0,33 х 10-4 (м 2 х °C)/Вт.

Различие в добавлении расчетного запаса

При расчете кожухотрубных теплообменников расчетный запас добавляется путем увеличения длины труб при сохранении расхода среды через каждую трубу. При расчете пластинчатого теплообменника такой же расчетный запас обеспечивается за счет добавления параллельных каналов или посредством уменьшения расхода в каждом канале. Это приводит к снижению степени турбулентности течения среды, уменьшению эффективности теплообмена и увеличению опасности загрязнения каналов теплообменника. Использование слишком большого коэффициента загрязнения может привести к повышенной интенсивности образования отложений.Для пластинчатого теплообменника, работающего в режиме вода/вода, значение расчетного запаса от 0 до 15 % (в зависимости от качества воды) можно считать вполне достаточным.

Рассчитываем коэффициент  1 со стороны греющего пара для случая конденсации на пучке n вертикальных труб высотой Н:


= 2,04
= 2,04
= 6765 Вт/(м 2 К), (10)

здесь , , , r физические параметры конденсата при температуре пленки конденсата t к, Н – высота нагревательных труб, м; t – перепад температур между греющим паром и стенками труб (принимаем в пределах 3…8 0 С).

Значения функции А t для воды при температуре конденсации пара

Температура конденсации пара t к, 0 С

О правильности расчетов судят, сопоставляя полученное значение  1 и его предельные величины, которые приведены в п. 1.

Рассчитаем коэффициент теплоотдачи α 2 от стенок труб к воде.

Для этого необходимо выбрать уравнение подобия вида

Nu = ARe m Pr n (11)

В зависимости от величины числа Re определяют режим течения жидкости и выбирают уравнение подобия.

(12)

Здесь n– число труб на 1 ход;

d вн = 0,025 - 20,002 = 0,021 м – внутренний диаметр трубы;

При Re > 10 4 имеем устойчивый турбулентный режим движения воды. Тогда:

Nu = 0,023  Re 0,8  Pr 0,43 (13)

Число Прандтля характеризует соотношение физических параметров теплоносителя:

=
= 3,28. (14)

, , , с – плотность, динамическая вязкость, теплопроводность и теплоемкость воды при t ср.

Nu = 0,023 26581 0,8  3,28 0,43 = 132,8

Число Нуссельта характеризует теплоотдачу и связано с коэффициентом  2 выражением:

Nu =
,  2 = =
= 4130 Вт/(м 2 К) (15)

С учетом значений  1 ,  2 , толщины стенки трубы  = 0,002 м и ее теплопроводности  ст, определяем коэффициент К по формуле (2):

=
= 2309 Вт/(м 2 К)

Сопоставляем полученное значение К с пределами для коэффициента теплопередачи, которые были указаны в п 1.

Определяем площадь поверхности теплообмена из основного уравнения теплопередачи по формуле (3):

=
= 29 м 2 .

Вновь по таблице 4 выбираем стандартный теплообменник:

площадь поверхности теплообмена F = 31 м 2 ,

диаметр кожуха D = 400 мм,

диаметр труб d = 25×2 мм,

число ходов z = 2,

общее число труб N = 100,

длина (высота) труб H = 4 м.

Запас площади

(запас площади должен быть в пределах 5…25%).

4. Механический расчет теплообменника

При расчете на внутреннее давление толщина стенки корпуса  к проверяется по формуле:

 к =
+ С, (16)

где р – давление пара 4·0,098 = 0,39 Н/мм 2 ;

D н – наружный диаметр кожуха, мм;

 = 0,9 коэффициент прочности сварного шва;

 доп = 87…93 Н/мм 2 – допускаемое напряжение для стали;

С = 2…8 мм – прибавка на коррозию.

 к =
+ 5 = 6 мм.

Принимаем нормализованную толщину стенки 8 мм.

Трубные решетки изготавливаются из листовой стали. Толщина стальных трубных решеток берется в пределах 15…35 мм. Она выбирается в зависимости от диаметра развальцованных труб d н и шага труб .

Расстояние между осями труб (шаг труб) τ выбирают в зависимости от наружного диаметра труб d н:

τ = (1,2…1,4)·d н, но не менее чем τ = d н + 6 мм.

Нормализованный шаг для труб d н = 25 мм равен τ = 32 мм.

 р =
.

При заданном шаге 32 мм толщина решетки должна быть не менее

 р =
= 17,1 мм.

Окончательно принимаем  р = 25 мм.

При расчете фланцевых соединений задаются размером стягивающего болта. Принимаем во фланцевом соединении для аппаратов с диаметром D в = 400…2000 мм стальной болт М16.

Определим допустимую нагрузку на 1 болт при затяжке:

q б = (d 1 – c 1) 2 , (17)

где d 1 = 14 мм – внутренний диаметр резьбы болта;

с 1 = 2 мм – конструктивная прибавка для болтов из углеродистой стали;

 = 90 Н/мм 2 – допустимое напряжение на растяжение.

q б = (14 – 2) 2  90 = 10174 Н.