Стабилизатор с малым падением напряжения (Low-Drop). Стабилизатор напряжения на полевом транзисторе — схемотехника Стабилизатор тока с малым падением напряжения

вызвала много откликов и вопросов. На некоторые вопросы я попытался ответить в комментариях к оригинальной статье. Здесь приведу несколько простейших вариаций на тему данного стабилизатора.Кстати, пока суть да дело я справился построить два 120-Ваттных блока питания, два "бочонка" со стабилизаторами собранным по обсуждаемой схеме.

Рабочий прототип

Окорпусение моих поделок всегда было проблемой. В этот раз, как мне кажется, я удачно выкрутился применив подставки для кухонной утвари из Икеи и кругляк, вырезанный из 6-миллиметровой плиты MDF.

120Ватт из бочонка

Ради чего весь сыр-бор?

Меня частенько называют сумасшедшим 🙂 И правда ведь: сегодня можно подобрать готовый импульсный источник питания практически под любые параметры. Стоить он будет возможно даже не дороже низкочастотного трансформатора, к тому же обычно оказывается и легче и компактней. Я же заплатил кучу деньгов за трансы и потратил несколько вечеров на сборку этих бочек. При том, что у меня уже были все необходимые источники. Итог: 7 импульсных коробочек были отправлены на хранение в подвал.

Открою секрет своего сумасшествия: это моя попытка уменьшить плотность электромагнитных полей в своём обиталище. К примеру микроволновка уже несколько лет тому назад была задарена людям, что выносят мусор из нашего подвала. Правда совесть немного всё же мучает: они ведь теперь облучаются и едят модифицированную пищу. Да и транс там был шикарный на 1килоВатт. 🙂

Вообще тема электромагнитных помех достойна диссера. Наверняка ещё не раз вернусь к ней в блоге...

На картинки можно "кликнуть" для просмотра в более высоком разрешении.

Распаяно "паутинкой" (МГТФ + Kynar)

Вариации на тему

Во всех приводимых ниже набросках сохранена нумерация элементов из .

Две вторичных обмотки + плавный старт

Вкратце я уже предлагал такую модификацию в предыдущей статье. Плавный запуск можно обеспечить добавлением всего лишь одного резистора R9.

Эффективный первичный источник - две вторичных обмотки

Примерный набор компонентов:

  • VD1, VD2 = диоды Шоттки 8A 40В
  • VD5-8 = 0.5A 200В маленький мостик
  • C1 = 15000 мкФ 25 В
  • C2, C3 = 47 мкФ 25 В
  • C4 = 1000 мкФ 35 В
  • R9 = 1 кОм
  • C6 = 0.1 мкФ керамика

Обратите внимание на увеличившуюся ёмкость C4. Совместно с R9 она обеспечивает плавное нарастание напряжения "V++" при включении устройства. Поскольку напряжение на выходе регулятора не может превышать V++ за вычетом порогового напряжения МДП транзистора, данная модификация обеспечивает так же и плавное нарастание выходного напряжения при старте.

Единственная вторичная обмотка + плавный старт

На схеме данной вариации от диодных мостов рябит в глазах 🙂 Спешу напомнить, что собственно умножитель остался без изменений: всё тот же маленький мостик и 3 конденсатора.

В случае, когда в системе уже присутствует какой-либо другой источник положительного напряжения (на несколько вольт выше того, что необходимо получить на выходе данного регулятора) - разумно будет использовать его в качестве "V++". От источника "V++" регулятор потребляет всего лишь несколько миллиампер, что не должно быть слишком обременительно для другого источника. Таким образом можно запросто избавиться от умножителя.

Обойдёмся без ограничителя тока

Без ограничителя тока схема может работать с пренебрежимо малым напряжением падения на проходном транзисторе и по-прежнему обеспечивать большие токи нагрузки, что недоступно ни одному из известных мне на сегодня промышленных LDO регуляторов.

Примерный список номиналов см. ниже.

Пожалуйста, не экономьте на предохранителях. Лучше заменить копеечную стеклянную трубочку с проволочкой, нежели тушить дымящийся трансформатор.
Рекомендую поставить "медленный" предохранитель (с буквой "T" - time) сразу после вторичной обмотки трансформатора. Предохранитель должен быть рассчитан на ток, примерно вдвое больший номинального тока нагрузки. Настоятельно не советую полагаться на предохранитель, стоящий в сетевом проводе, особенно в случае, когда трансформатор имеет несколько вторичных обмоток от которых запитаны разные узлы устройства. В таком случае "дымный" сценарий может быть такой: одна вторичка перегружена и уже дымит, тогда как общее потребление остаётся в пределах нормы, например из-за отключения остальных узлов устройства.

Полная схема регулятора

Просто перерисованная так, чтобы легче читалось, я надеюсь.

Пример номиналов из моего прототипа:

  • R1, R6 = 2.2 кОм
  • R2, R3 = 470 Ом
  • R4 = 0.22 Ом 3Вт
  • R5 = 12 кОм
  • R7 = 2.2 кОм многооборотный
  • C5 = 10 nF керамика
  • VT1 = IRFZ40
  • VT2 = 2N2222
  • VD9 = 1N5244B (стабилитрон на 14В)

Тестируем!

Картинка замечательного устройства, выручавшего меня неоднократно при отладке аудио-усилителей. В этот раз с его помощью оттестировал мои "бочонки", рассчитанные на 12.6V 2A по стабилизированному выходу. Ограничитель тока установлен примерно на 2.5A.


Дальнейшее развитие идеи

  1. Внешний контроль включения в сочетании с плавным стартом;
  2. Термо-регулируемый вентилятор;
  3. Термический предохранитель;
  4. Набор для самостоятельной сборки;
  5. Программируемый источник...

Так что заглядывайте почаще, а лучше - подпишитесь на рассылку 😉

This entry was posted in , by . Bookmark the .

Увеличить срок службы комплекта батарей или заряда аккумулятора, просто добавив в схему линейные стабилизаторы напряжения? Увеличить стабильность напряжения и уменьшить пульсации после импульсного преобразователя практически без снижения КПД блока питания? Это реально, если использовать современные микромощные LDO-стабилизаторы от STMicroelectronics с малым падением напряжения производства.

Продолжительное время разработчикам электронной аппаратуры были доступны только классические стабилизаторы (например, или стабилизаторы серий 78xx/79xx) с минимальным падением на регулирующем элементе от 0,8 В и выше. Связано это было с тем, что в качестве регулирующего элемента применялся n-p-n-транзистор, включенный по схеме с общим коллектором. Для того, чтобы открыть такой транзистор до насыщения, необходим дополнительный источник питания, напряжение которого превышает входное напряжение. Однако развитие технологий не стоит на месте, и с появлением мощных и компактных p-канальных полевых транзисторов их тоже начали использовать в стабилизаторах напряжения, включая по схеме с общим истоком. Такая схема позволяет при необходимости полностью открыть транзистор, и падение напряжения на его переходе фактически будет зависить только от сопротивления канала и тока нагрузки. Так появился стабилизатор LDO (Low DropOut).

Следует учитывать, что минимальное падение на канале транзистора LDO-стабилизатора практически линейно зависит от протекающего через него тока, так как канал фактически является электрически регулируемым резистором с некоторым минимальным сопротивлением. Поэтому при уменьшении выходного тока это напряжение тоже пропорционально уменьшается до некоторого предела, обычно равного 10…50 мВ. Лидерами же следует признать микросхемы и , у которых минимальное падение напряжения составляет всего 0,4 мВ. Если падение напряжения – одно из ключевых требований к стабилизатору, то следует присмотреться к стабилизаторам с большим запасом по току, так как у них из-за меньшего сопротивления канала регулирующего транзистора может быть гораздо меньшее падение напряжения на том же токе нагрузки.

Уникальная возможность LDO – его способность практически без ухудшения суммарного КПД блока питания стабилизировать напряжение, сглаживать выбросы и уменьшать шум на шине питания для высокочувствительных устройств, таких как радиоприемники, модули GPS, аудиоустройства, АЦП высокого разрешения, генераторы VCO, . Например, для питания схемы напряжением 3,3 В мы выбрали LDO с минимальным падением 150 мВ и понижающий импульсный стабилизатор с пульсациями на выходе амплитудой 50 мВ (верхняя кривая на рисунке 1). Выходное напряжение импульсного стабилизатора можно приблизительно оценить по формуле:

U Имп ≥ U Нагр. + U Drop + 1/2∆U Имп + 100…200 мВ,

где U Имп – выходное напряжение импульсного стабилизатора, U Нагр. – выходное напряжение линейного стабилизатора (напряжение питания нагрузки), ∆U Имп – амплитуда пульсаций напряжения на выходе импульсного стабилизатора. Поэтому выберем его равным 3,6 В. В итоге КПД ухудшится всего на 8%, однако при этом значительно уменьшатся пульсации напряжения. Коэффициент подавления пульсаций напряжения питания (SVR) определяется по формуле:

SVR = 20Log*(∆U IN /∆U OUT)

При типовом коэффициенте порядка 50 дБ пульсации ослабляются примерно в 330 раз. То есть амплитуда пульсаций на выходе нашего источника питания уменьшится до сотен микровольт (нужно еще учитывать шум самого LDO, обычно он составляет десятки мкВ/В) – такой результат практически недостижим для большинства импульсных преобразователей без дополнительного стабилизатора или многозвенных LC-фильтров на выходе. Наилучшие характеристики стабилизации обеспечивают микросхемы , и микросхемы серии LD39xxx – у шум не превышает 10 мкВ/В, а коэффициент SVR доходит до 90 дБ.

Однако у LDO тоже есть недостатки, один из которых – склонность к самовозбуждению, причем не только при слишком большом ESR выходного конденсатора (или его слишком маленькой емкости), но и при слишком низком ESR. Связана эта особенность с тем, что каскад с общим эмиттером (общим истоком) имеет высокий выходной импеданс, поэтому на частотной характеристике стабилизатора появляется дополнительный низкочастотный полюс (его частота зависит от сопротивления нагрузки и емкости выходного конденсатора). В итоге уже на частотах в десятки килогерц сдвиг фазы может превысить 180° и отрицательная обратная связь превращается в положительную . Для решения такой проблемы в частотную характеристику необходимо добавить нуль, и простейший способ сделать это – увеличить последовательное сопротивление (ESR) выходного конденсатора: это практически не увеличивает пульсации выходного напряжения, но является залогом стабильности всей схемы. Причем емкость и ESR конденсатора должны быть в строго очерченных пределах. Они указываются индивидуально для каждого LDO-стабилизатора. Увы, но стандартный подход «чем больше емкость и чем ниже ESR выходных конденсаторов – тем лучше», применимый к классическим линейным и импульсным стабилизаторам, здесь не работает.

В зависимости от компонентов внутренней корректирующей схемы, LDO-стабилизаторы можно условно разделить на три группы:

  • стабилизаторы, рассчитанные на работу с танталовыми или электролитическими конденсаторами – им требуется конденсатор с ESR 0,5…10 Ом и более;
  • стабилизаторы, рассчитанные на работу с танталовыми конденсаторами (ESR 0,3…5 Ом);
  • стабилизаторы, рассчитанные на работу с керамическими конденсаторами – они сохраняют стабильность при ESR выходного конденсатора от 0,005 до 1 Ом.

Для высокочастотных и/или сильноточных цифровых схем рекомендуется ставить фильтрующие керамические конденсаторы емкостью 0,1…1 мкФ возле каждой микросхемы, и они тоже могут нарушить стабильность LDO-стабилизатора. Чтобы этого не происходило, рекомендуется увеличивать длину и уменьшать толщину дорожек от стабилизатора до нагрузки (тем самым увеличивать индуктивность дорожек), ставить в разрыв цепи питания дроссели или резисторы, а также выбирать LDO-стабилизаторы, скомпенсированные под низкий ESR нагрузки .

Есть еще один способ увеличить стабильность преобразователя – использовать в качестве регулирующего n-канальный транзистор, включенный по схеме с общим стоком. Такая схема стабильна практически при любых характеристиках выходного конденсатора, и даже вообще без конденсатора (так называемые capless-стабилизаторы). Однако для ее корректной работы необходим внутренний умножитель напряжения, который будет повышать входное напряжение для возможности отпирания регулирующего транзистора до насыщения. По такой схеме изготовлен – благодаря более низкому сопротивлению канала n-канальных транзисторов той же площади удалось значительно снизить падение напряжения, однако из-за постоянно работающего умножителя резко возрос потребляемый микросхемой ток в активном режиме. Но, по мнению автора, за такими стабилизаторами – будущее LDO, поэтому проблема повышенного энергопотребления наверняка скоро решится.

Из-за значительной емкости затвора ухудшается способность транзистора быстро реагировать на резкие изменения тока нагрузки. В итоге, при уменьшении тока нагрузки выходное напряжение стабилизатора по инерции повышается (до тех пор, пока встроенный операционный усилитель не сможет чуть закрыть транзистор), а при увеличении тока – выходное напряжение слегка проседает (нижняя кривая на рисунке 1). Увеличить нагрузочную способность стабилизатора можно посредством увеличения мощности выхода встроенного операционного усилителя, однако вслед за этим увеличивается потребляемый стабилизатором ток. Поэтому разработчику приходится выбирать: или использовать в схеме сверхмаломощные стабилизаторы (например, серий или с потребляемым током в единицы микроампер, но с очень высокой инерционностью и большими просадками напряжения при резких изменениях тока нагрузки), или стабилизаторы среднего и высокого быстродействия, но с потреблением до сотен микроампер. В качестве альтернативы существуют стабилизаторы с режимами экономии энергии (например, ), которые при уменьшении тока нагрузки автоматически переключаются в микромощный режим. Аналогично работают многие современные микроконтроллеры (например, семейств STM8 и STM32) – у последних имеется два встроенных LDO-стабилизатора, один из которых работает в микромощном, а второй – в активном режиме, что обеспечивает высокую энергоэффективность во всех режимах работы и во всем диапазоне напряжения питания.

Все рассмотренные в этой статье стабилизаторы для своей работы требуют минимум внешних компонентов – всего два конденсатора, причем входной конденсатор емкостью минимум 1 мкф обязателен для большинства микросхем, и только для регулируемых версий еще необходим делитель из двух резисторов (рисунок 2). Все микросхемы имеют защиту от перегрузки и перегрева, способны работать в диапазоне температур -40…125°С. Многие микросхемы имеют вход включения Enable: потребляемый ток в режиме «Выключено» обычно не превышает единиц…сотен наноампер. Основные электрические характеристики стабилизаторов указаны в таблице 1.

Таблица 1. Основные электрические характеристики LDO-стабилизаторов ST

Наименование Входное
напряжение, В
Выходное
напряжение, В
Вых.
ток, мА
Падение
напряжения¹, мВ
Потреб. ток (min), мкА SVR², дБ Шум на выходе³, мкВRMS/В Enable /Power Good Рекомендуемые характеристики
вых. конденсатора
Корпус
Емкость, мкф ESR, Ом
2,5…6 1,22; 1,8; 2,5; 2,6; 2,7; 2,8; 2,9; 3,0; 3,3; 4,7 150 0,4…60 85 50 30 +/- 1…22 0,005…5 SOT23-5L, TSOT23-5L, CSP (1,57×1,22 мм)
2,5…6 1,5; 1,8; 2,5; 2,8; 3,0; 3,3; 5,0 300 0,4…150 85 50 30 +/- 2,2…22 0,005…5 SOT23-5L, DFN6 (3×3 мм)
1,5…5,5 0,8; 1,0; 1,2; 1,25; 1,5; 1,8; 2,5; 3,3 150 до 80 18 62 29 +/- 0,33…22 0,15…2 SOT23-5L, SOT666, CSP (1,1×1,1 мм)
2,4…5,5 0,8; 1,2; 1,5; 1,8; 2,5; 3,0; 3,3 150 до 150 31 76 20 +/- 0,33…22 0,05…8 SOT323-5L
1,5…5,5 0,8…5,0 200 до 200 20 65 45 +/- 0,22…22 0,05…0,9 DFN4 (1×1 мм)
1,5…5,5 1,0; 1,2; 1,4; 1,5; 1,8; 2,5; 2,8; 3,0; 3,3 150 80 (100 мА) 20 67 30 +/- 1…22 0,1…1,8 CSP4 (0,8×0,8 мм)
1,5…5,5 1,0; 1,2; 1,8; 2,5; 2,9; 3,0; 3,3; 4,1; Adj 300 до 300 55 (1) 65 (48) 38 (100) +/- 0,33…22 0,1…4 CSP4 (0,69х0,69 мм)/DFN6 (1,2×1,3 мм)
1,5…5,5 2,5; 3,3; Adj 500 до 200 20 62 30 +/+ 1…22 0,05…0,8 DFN6 (3×3 мм)
1,5…5,5 1,2; 2,5; 3,3; Adj 1000 до 200 20 65 85 +/+ 1…22 0,05…0,15 DFN6 (3×3 мм)
1,25…6,0 3,3; Adj 2000 до 135 100 50 24 +/+ 1…22 0,05…1,2 DFN6 (3×3 мм), DFN8 (4×4 мм)
1,9…5,5 0,8; 1,0; 1,1; 1,2; 1,5; 1,8; 2,5; 2,8; 2,9; 3,0; 3,1; 3,2; 3,3; 3,5; Adj 200 до 150 30 55 51 +/- 1…22 0…10
1,9…5,5 0,8; 1,1; 1,2; 1,5; 1,8; 2,5; 2,9; 3,0; 3,2; 3,3; Adj 300 до 200 30 55 51 +/- 1…22 0…10 SOT23-5L, SOT323-5L, DFN6 (1,2×1,3 мм)
2,5…13,2 1,2…1,8; 2,5…3,3; 3,6; 4,0; 4,2; 5,0; 6,0; 8,5; 9,0; Adj 200 до 200 40 45 20 +/- 1…22 0,05…0,9 SOT23-5L, SOT323-5L, DFN6 (1,2×1,3 мм)
2,1…5,5 1,0; 1,2; 1,5; 1,8; 2,5; 2,8; 3,0; 3,3 150 до 86 17 89 6,3…9,9 +/- 0,33…10 0,05…0,6 DFN6 (2×2 мм)
1,8…5,5 3,3; Adj 150 до 70 120 51 40 +/- Любая Любой SOT23-5L
2,3…12 1,8; 2,5; 3,3; 5,0; Adj 50 до 350 3 30 560 -/- 0,22…4,7 0…10 SOT323-5L
1,5…5,5 1,2; 1,5; 1,8; 2,5; 2,8; 3,0; 3,1; 3,3 150 до 112 1 30 75 +/- 0,47…10 0,056…6 SOT666
2,5…24 2,5; 3,3; Adj 85 до 500 4,15 45 95 -/- 0,47…1 0…1,5 SOT23-5L, SOT323-5L, DFN8 (3×3 мм)

Примечания:

  1. на максимальном выходном токе;
  2. на частоте 10 кГц;
  3. в диапазоне частот от 10 Гц до 100 кГц;
  4. в скобках указаны значения для режима Green.

Микромощные LDO-стабилизаторы

Как известно, у многих схем с широким диапазоном напряжения питания при повышении напряжения увеличивается потребляемый ток, поэтому для увеличения срока службы комплекта батарей следует стабилизировать напряжение на минимально допустимом уровне, при котором еще не нарушается работа схемы . Однако при этом нужно учитывать ток потребления самого LDO – он должен быть гораздо ниже той разницы, которую мы пытаемся сэкономить. Также нужно учитывать минимальное падение напряжения на стабилизаторе, так как чем оно выше – тем раньше у нас сядут батарейки. И если лет 20 назад разработчикам были доступны только микросхемы семейства КРЕН с типовым потребляемым током более 3 мА, то сейчас выбор гораздо шире.

Для работы в микромощном режиме лучше всего подходит – уникальный стабилизатор с потреблением порядка 1 мкА (до 2,4 мкА при максимальном токе нагрузки) и падением напряжения менее 112 мВ. При этом его выходное напряжение во всем рабочем диапазоне изменяется не более, чем на 3…5%. Схема стабилизатора – простейшая (рисунок 3), без каких-либо дополнительных опций. Чуть выше энергопотребление у . Эта микросхема способна работать при входном напряжении до 12 В. А , при потребляемом токе 4,5 мкА и сравнительно невысокой стоимости, способна выдерживать входное напряжение до 26 В. Микросхемы изготавливаются в корпусах средних размеров и идеально подходят для устройств с батарейным питанием – при токе нагрузки не более единиц микроампер даже маленькая батарейка CR2032 в устройстве с будет работать десятки лет!


Один из важных параметров последовательных стабилизаторов напряжения (в том числе и микросхемных) - минимально допустимое напряжение между входом и выходом стабилизатора (ΔUмин) при максимальном токе нагрузки. Он показывает, при какой минимальной разности входного (Uвх) и выходного (Uвых) напряжений все параметры стабилизатора находятся в пределах нормы. К сожалению, не все радиолюбители обращают на него внимание, обычно их интересуют только выходное напряжение и максимальный выходной ток. Между тем этот параметр оказывает существенное влияние как на качество выходного напряжения, так и на КПД стабилизатора.
Например, у широко распространенных микросхемных стабилизаторов серии 1_М78хх (хх - число, равное напряжению стабилизации в вольтах) минимально допустимое напряжение дUмин= 2 В при токе 1 А. На практике это означает, что для стабилизатора на микросхеме LM7805 (Uвых = 5 В) напряжение Uвхмин должно быть не менее 7 В. Если амплитуда пульсаций на выходе выпрямителя достигает 1 В, то значение Uвхмин повышается до 8 В, а с учетом нестабильности сетевого напряжения в пределах ±10 % возрастает до 8,8 В. В результате КПД стабилизатора не превысит 57 %, а при большом выходном токе микросхема будет сильно нагреваться.
Возможный выход из положения - применение так называемых Low Dropout (с низким падением напряжения) микросхемных стабилизаторов, например, серии КР1158ЕНхх (ΔUмин = 0,6 В при токе 0,5 А) или LM1084 (Uмин= 1,3 В при токе 5 А). Но еще меньших значений Uмин можно добиться, если в качестве регулирующего элемента использовать мощный полевой транзистор. Именно о таком устройстве и пойдет речь далее.

Схема предлагаемого стабилизатора показана на рис. 1. Полевой транзистор VT1 включен в плюсовую линию питания. Применение прибора с п-каналом обусловлено результатами проведенных автором испытаний: оказалось, что такие транзисторы менее склонны к самовозбуждению и к тому же, как правило, сопротивление открытого канала у них меньше, чем у р-канальных. Управляет транзистором VT1 параллельный стабилизатор напряжения DA1. Для того чтобы полевой транзистор открылся, напряжение на его затворе должно быть как минимум на 2,5 В больше, чем на истоке. Поэтому необходим дополнительный источник с выходным напряжением, превышающим напряжение на стоке полевого транзистора именно на эту величину.
Такой источник - повышающий преобразователь напряжения - собран на микросхеме DD1. Логические элементы DD1.1, DD1.2 использованы в генераторе импульсов с частотой следования около 30 кГц, DD1.3, DD1.4 - буферные; диоды VD1, VD2 и конденсаторы СЗ, С4 образуют выпрямитель с удвоением напряжения, резистор R2 и конденсатор С5 - сглаживающий фильтр.

Конденсаторы С6, С7 обеспечивают устойчивую работу устройства. Выходное напряжение (его минимальное значение 2,5 В) устанавливают подстроеч-ным резистором R4.
Лабораторные испытания макета устройства показали, что при токе нагрузки 3 А и снижении входного напряжения с 7 до 5,05 В выходное уменьшается с 5 до 4,95 В. Иными словами, при указанном токе минимальное падение напряжения ΔUмин не превышает 0,1 В. Это позволяет более полно использовать возможности первичного источника питания (выпрямителя) и повысить КПД стабилизатора напряжения.

Детали устройства монтируют на печатной плате (рис. 2) из односторонне фольгированного стеклотекстолита толщиной 1,5...2 мм. Постоянные резисторы - Р1-4, МЛТ, подстроечный - СПЗ-19а, конденсаторы С2, С6, С7 - керамические К10-17, остальные - оксидные импортные, например, серии ТК фирмы Jamicon. В стабилизаторе с выходным напряжением 3...6 В следует применять полевой транзистор с напряжением открывания не более 2,5 В. У таких транзисторов фирмы International Rectifier в маркировке, как правило, присутствует буква L (см. справочный листок "Мощные полевые переключательные транзисторы фирмы International Rectifier" в "Радио", 2001, № 5, с. 45). При токе нагрузки более 1,5...2 А необходимо использовать транзистор с сопротивлением открытого канала не более 0,02... 0,03 Ом.
Во избежание перегрева полевой транзистор закрепляют на тепло-отводе, к нему же через изолирующую прокладку можно приклеить плату. Внешний вид смонтированной платы показан на рис. 3.

Выходное напряжение стабилизатора можно повысить, однако не следует забывать, что максимальное напряжение питания микросхемы К561ЛА7- 15 В, а предельное значение напряжения затвор-исток полевого транзистора в большинстве случаев не превышает 20 В.

Поэтому в подобном случае следует применить повышающий преобразователь, собранный по иной схеме (на элементной базе, допускающей более высокое напряжение питания), и ограничить напряжение на затворе полевого транзистора, подключив параллельно конденсатору С5 стабилитрон с соответствующим напряжением стабилизации. Если стабилизатор предполагается встроить в источник питания с понижающим трансформатором, то преобразователь напряжения (микросхему DD1, диоды VD1, VD2, резистор R1 и конденсаторы С2, СЗ) можно исключить, а "основной" выпрямитель на диодном мосте VD5 (рис. 4) дополнить удвоителем напряжения на диодах VD3, VD4 и конденсаторе С9 (нумерация элементов продолжает начатую на рис. 1).


Дата публикации: 29.09.2009

Мнения читателей
  • Серегй / 06.10.2011 - 08:34
    Какие номиналы нужно изменить, чтоб Uвых стало 9в?
  • Николай / 30.07.2011 - 22:30
    Удачная схема, спасибо. Использовал ее для стабилизации напряжения при токах до 0,5А от источника с сильно просаживающимся напряжением при увеличении тока нагрузки. Стал вопрос о собственном потреблении управляющей части - много жрет:), от 18,6 мА (U вх макс) до 8,7 мА. Поставил R3 = 8,2 кОм (TL431 в номинальном режиме, I > 1мА, хотя типичный минимальный ток 450 мкА) и регулирующий R4 = 50 кОм. потребляемый ток снизился до 2,3 мА - 1,1 мА. При такой модификации можно использовать конденсаторы С3-С5 меньшей емкости, я использовал 10мкФ.

Одним из важнейших свойств стабилизаторов питания является наименьшее допускаемое напряжение между выходом и входом стабилизатора при наибольшем нагрузочном токе. Он выдает информацию, при какой наименьшей разности напряжений параметры прибора находятся в нормальном состоянии.

Одним способом повышения КПД линейной настройки является снижение до наименьшего значения падения напряжения регулировочного элемента. Это особенно важно для миниатюрных регуляторов, на которых каждые вспомогательные 50 милливольт падения преобразуются в несколько сотен милливатт теплоты со сложным рассеиванием в небольшом корпусе устройства.

Поэтому для подключения подобных схем многие фирмы предлагают проектировщикам микросхемы с малым падением до 100 милливольт. Хорошие параметры имеет микросхема ST 1L 08 при токовой нагрузке до 0,8 А наименьшее падение на транзисторе имеется около 70 милливольт.

Из заводских стабилизаторов можно отметить те, у которых при снижении нагрузочного тока до наименьшего значения падение снижается до 0,4 милливольта. Для уменьшения шума такие микросхемы снабжены вспомогательным буферным усилителем с клеммой для подключения наружного фильтра емкостью до 0,01 мкФ. К такому фильтру предъявляются наименьшие требования: величина емкости должна быть от 2,2 до 22 мкФ.

Особое внимание необходимо обратить на микросхему LD CL 015. При хороших свойствах и низком падении напряжения это один из стабилизаторов, работающих без конденсаторного фильтра. Это достигается схемой операционного усилителя с запасом по фазе. Однако для улучшения параметров и уменьшения шума на выходе целесообразно установить на выходе и входе прибора емкости около 0,1 мкФ.

Прибор с падением до 0,05 вольт

При подключении разной аппаратуры от аккумуляторов, чаще всего есть необходимость выравнивать напряжение и расходуемый ток. Например, для образования лазера видеопроигрывателя или фонарика на светодиодах. Для решения такой задачи на производстве уже спроектировано несколько микросхем в виде драйверов. Они представляют собой низковольтный преобразователь напряжения с внутренним стабилизатором. Новой разработкой является микросхема LТ 130 8А.

Не снижая преимущества таких драйверов, нужно заметить, что в большом областном городе нет таких микросхем. Можно заказать по высокой стоимости, около 10 евро. Поэтому есть дешевая простая и эффективная схема прибора из одного радио журнала.

Коэффициент стабилизации такого устройства равен 10000. Напряжение на выходе настраиваем сопротивлением 2,4 килома от 2 до 8 вольт. При величине питания на входе ниже выхода, настроечный транзистор открыт, и снижение питания равно нескольким мВ. Если входное напряжение выше выходного, то на стабилитроне оно равно 0,05 вольт. Это становится возможным для от пальчиковых батареек. Даже, меняя нагрузочный ток в интервале от 0 до 0,5 ампера, выходное напряжение изменится только на 1 мВ.

Для такого простого стабилизатора плату не обязательно травить, а можно вырезать специальным ножом. Оно изготавливается из сломанных полотен по железу, затачивается на шлифовальном круге. Затем ручку обматывают для удобства пользования.

Таким резаком можно процарапать дорожки на медной плате.

Плату чистим шлифшкуркой, лудим, припаиваем детали и все готово.

На фотографиях видно, что нет необходимости в травлении платы и ее сверлении.

Такой способ всегда применяется для производства маленьких простых схем. Нет необходимости оснащать радиатором охлаждения мощный транзистор. Он из-за небольшого падения напряжения не нагревается. При настройке обязательно необходимо подключить слабую нагрузку на выход.

Устройство выравнивания питания с малым падением

Наиболее важным свойством обладает стабилизатор с малым падением питания, так же как и на микросхемах, наименее допустимая разность потенциалов выхода и входа при наибольшей токовой нагрузке. Он определяет, при какой наименьшей разности напряжений между выходом и входом все свойства прибора находятся в норме.

  • У наиболее распространенных стабилизаторов, выполненных на микросхемах серии М78 наименьшее допускаемое напряжение равно 2 вольта при силе тока 1 ампер.
  • Прибор на микросхеме с минимальным напряжением на входе должен выдавать напряжение 7 вольт на выходе. При амплитуде импульсов на выходе прибора доходит до 1 вольта, то величина входного наименьшего напряжения увеличивается до 8 вольт.
  • С учетом нестабильности напряжения сети в интервале 10% увеличивается до 8,8 вольт.

В итоге КПД прибора не превзойдет 57%, при значительном токе на выходе микросхема сильно нагреется.

Применение микросхем с низким падением

Хорошим выходом из ситуации является использование таких сборок, как КР 1158 ЕН, или LМ 10 84.

Работа прибора на микросхеме заключается в следующем:

  • Малых значений напряжения можно достичь, применяя для регулировки мощный полевик.
  • Транзистор работает в положительной линии.
  • Использование стабилизатора с n-каналом предполагается по испытаниям: такие полупроводники не склонны к самовозбуждению.
  • Сопротивление открытой цепи ниже, по сравнению с p-канальным.
  • Транзистором управляет параллельный стабилизатор.
  • Для открытия полевого транзистора, напряжение на затворе доводят на 2,5 вольта выше истока.

Такой вспомогательный источник необходим, если у него напряжение на выходе выше напряжения стока полевого транзистора на это значение.

MOSFET + TL431 = Последовательный компенсационный стабилизатор напряжения с минимальным падением

Идеальный LDO регулятор

LDO = low dropout = малое минимальное падение напряжения на проходном элементе

Для популярного трёх-выводного интегрального стабилизатора LM317 (datasheet) минимальное падение напряжения, при котором ещё нормируется его работа - 3 Вольта. Причём в документации этот параметр явно нигде не указан, а так, скромненько, в условиях измерений упоминается. В большинстве же случаев подразумевается, что падение на чипе 5 Вольт и более:
"Unless otherwise specified, VIN − VOUT = 5V" .

Баба Яга - против! Жалко терять 3 Вольта на глупом проходном транзисторе. И рассеивать лишние Ватты. Популярное решение проблемы - импульсные стабилизаторы - здесь не обсуждаем по причине того, что они свистят . С помехами можно бороться, но, как известно: кто не борется - тот непобедим! 😉

Идея
Идея данной схемки восходит к одному из многочисленных datasheet "ов на TL431. Вот, например, что предлагают National Semiconductor / TI:

Vo ~= Vref * (1+R1/R2)

Сам по себе такой регулятор не шибко интересен: на мой взгляд он ни чем не лучше, чем обычные трёхвыводные стабилизаторы 7805, LM317 и тому подобные. Минимальное падение на проходном дарлингтоне меньше 2 Вольт тут вряд ли удастся получить. Да к тому же никаких защит ни по току, ни от перегрева. Разве что транзисторы можно ставить на столько толстые, на сколько душа пожелает.

Недавно мне понадобилось-таки соорудить линейный стабилизатор с минимальным падением напряжения. Конечно, всегда можно извернуться, взять трансформатор с бОльшим напряжением на вторичке, диоды Шоттки в мост поставить, конденсаторов накопительных поболе... И всем этим счастьем греть трёхвыводной стабилизатор. Но хотелось-то изящного решения и с тем трансом, что был в наличии. Какой проходной регулятор может обеспечить падение близкое к нулю? MOSFET: у современных мощных полевиков сопротивление канала может быть единицы милли-Ом.

Простая замена дарлингтона на полевой транзистор с изолированным затвором и индуцированным каналом (т.е. самый обычный MOSFET) в схеме выше - не особо поможет. Так как пороговое напряжение затвор-исток будет Вольта 3-4 у обычных, и всё одно больше Вольта у "логических" MOSFET"ов - чем и будет задано минимальное проходное напряжение на таком стабилизаторе.

Интересно могло бы получиться при использовании полевика, работающего в режиме обеднения (т.е. со встроенным каналом), или с p-n переходом. Но к сожалению, мощные устройства этих типов нынче практически недоступны.

Спасает дополнительный источник напряжения смещения. Такой источник совсем не должен быть сильноточным - несколько миллиАмпер будет достаточно.

Работает это всё очень просто: когда напряжение на управляющем входе TL431, пропорциональное выходному напряжению, падает ниже порогового (2.5V) - "стабилитрон" закрывается и "отпускает" затвор полевика "вверх". Ток от дополнительного источника через резистор "подтягивает" напряжение на затворе, а, следовательно, и на выходе стабилизатора.
В обратную сторону, при увеличении выходного напряжения, всё работает аналогично: "стабилитрон" приоткрывается и уменьшает напряжение на затворе полевика.
TL431 суть устройство линейное, никаких защёлок в ней нету:

Реальность
В схеме реального устройства я всё же добавил защиту по току, пожертвовав пол-Вольта падения в пользу безопасности. В принципе, в низковольтных конструкциях часто можно обойтись плавким предохранителем, так как полевые транзисторы доступны с огромным запасом по току и при наличии радиатора способны выдерживать бешеные перегрузки. Если же и 0.5 Вольта жалко, и защита по току необходима - пишите, ибо есть способы 😉

30 января 2012: 🙂 Работает отлично! При токах нагрузки примерно от 2А и выше - мощные диоды желательно усадить на небольшой радиатор. R8=0; C7=0.1 ... 10мкФ керамика или плёнка.

При номиналах R5-R6-R7, указанных на схеме, диапазон регулировки выходного напряжения примерно от 9 до 16 Вольт. Естественно, реальный максимум зависит от того, сколько может обеспечить трансформатор под нагрузкой.
R4 необходимо использовать достойной мощности: PmaxR4 ~= 0.5 / R. В данном примере - двухватник будет в самый раз.

Где это может понадобиться
Например: в ламповой технике для питания накальных цепей постоянным током.
Зачем постоянный, да ещё так тщательно стабилизированный ток для питания нитей накала?

  1. Исключить наводки переменного напряжения в сигнальные цепи. Путей для просачивания "фона" из накальных цепей в сигнал несколько (тема для отдельной статьи!)
  2. Питать накал строго заданным напряжением. Есть данные, что превышение напряжения накала на 10% от номинального может сократить срок службы лампы на порядок. Нормы же допусков для напряжения питающей сети плюс погрешности исполнения трансформаторов и т.п. - 10% ошибки легко набежит.

Для 6-вольтовых накалов необходимо уменьшить R5: 5.6КОм будет в самый раз.

Что можно улучшить
Например, для питания нитей накала полезно добавить плавный старт. Для этого достаточно будет увеличить C4 скажем до 1000мкФ и включить между мостом и C4 резистор сопротивлением в 1КОм.

Немножко окололамповой мифологии
Позволю себе пройтись по поводу одного стойкого заблуждения, утверждающего, будто питание накала "постоянкой" отрицательно сказывается на "звуке".
Наиболее вероятный источник происхождения этого мифа, как водится - недостаток понимания и кривые ручки. Например: один трансформатор запитывает и аноды и накал. Номинальный ток накальной обмотки, скажем, 1А, который до этого питал накал ламп напрямую, и те потребляли чуть меньше этого самого 1А. Всё работало хорошо, может быть фонило чуток. Если теперь некий паяльщик-такелажник, мнящий себя "tube-guru", вдруг запитал те же лампы от той же обмотки но уже через выпрямитель/конденсатор/стабилизатор - всё, хана усилку! Объяснение простое, хотя не для всех очевидное:

  1. Во-первых, трансформатор теперь перегружен из-за импульсного характера тока заряда накопительной ёмкости (нужна отдельная статья!) Если вкратце: надо брать транс с номинальным током вторички примерно в 1.8 раза больше, нежели выпрямленный ток нагрузки.
  2. Во-вторых - ударные токи заряда накопительных емкостей в источнике питания накала ничего хорошего в анодное питание не добавят.
  • Заключение
  • Вам было интересно? Напишите мне!

Спрашивайте, предлагайте: в комментариях, или по e-mail (есть в моём профайле). Спасибо!

Всего Вам доброго!
- Сергей Патрушин.

This entry was posted in , by . Bookmark the .

Комментарии ВКонтакте

131 thoughts on “MOSFET + TL431 = Последовательный компенсационный стабилизатор напряжения с минимальным падением

Этот сайт использует Akismet для борьбы со спамом.