Прогрев песка в зимнее время. Обогрев инертных материалов зимой

Разработка грунта в зимних условиях.

В строительстве из общего объема земляных работ от 20 до 25% выполняется в зимних условиях, при этом доля грунта, разрабатываемого в мерзлом состоянии, остается постоянной - 10-15% с возрастанием из года в год абсолютного значения этого объема.

В практике строительства возникает необходимость разрабатывать грунты, находящиеся в мерзлом состоянии только в зимний период года, т.е. грунты сезонного промерзания, или в течение всего года, т.е. вечномерзлые грунты.

Разработка вечномерзлых грунтов может производиться теми же способами, что и мерзлых грунтов сезонного промерзания. Однако при возведении земляных сооружений в условиях вечной мерзлоты необходимо учитывать специфические особенности геотермического режима вечномерзлых грунтов и изменение свойств грунтов при его нарушении.

При отрицательных температурах замерзание воды, содержащейся в порах грунта, существенно изменяет строительно-технологические свойства нескальных грунтов. В мерзлых грунтах значительно увеличивается механическая прочность, в связи с чем, разработка их землеройными машинами затрудняется или вообще невозможна без подготовки.

Глубина промерзания зависит от температуры воздуха, длительности воздействия отрицательных температур, рода грунта и др.

Земляные работы зимой осуществляют следующими тремя методами. При первом методе предусматривают предварительную подготовку грунтов с последующей их разработкой обычными методами; при втором - мерзлые грунты нарезают предварительно на блоки; при третьем методе грунты разрабатывают без их предварительной подготовки. Предварительная подготовка грунта для разработки зимой заключается в предохранении его от промерзания, оттаивании мерзлого грунта, предварительном рыхлении мерзлого грунта.

Предохранение грунта от промерзания . Известно, что наличие на дневной по-

верхности термоизоляционного слоя уменьшает как период, так и глубину промерзания. После отвода поверхностных вод можно устроить термоизоляционный слой одним из следующих способов.

Рыхление грунта . При вспахивании и бороновании грунта на участке, предназначенном для разработки зимой, его верхний слои приобретает рыхлую структуру с замкнутыми пустотами, заполненными воздухом, обладающую достаточными термоизоляционными свойствами. Вспашку ведут тракторными плугами или рыхлителями на глубину 20...35 см с последующим боронованием на глубину 15...20 см в одном направлении (или в перекрестных направлениях), что повышает термоизоляционный эффект на 18...30%.. Снеговой покров на утепляемой площади можно искусственно увеличить, сгребая снег бульдозерами, автогрейдерами или путем снегозадержания с помощью щитов. Чаще всего механическое рыхление применяют для утепления значительных по площади участков, Защита поверхности грунта термоизоляционными материалами. Утепляющий слой может быть также выполнен из дешевых местных материалов: древесных листьев, сухого мха, торфа, соломенных матов, шлака, стружек и опилок. Поверхностное утепление грунта применяют в основном для небольших по площади выемок.

Пропитку грунта солевыми растворами ведут следующим образом. На поверхно-

сти песчаного и супесчаного грунта рассыпают заданное количество соли (хлористого кальция 0,5 кг/м2 , хлористого натрия 1 кг/м2 ), после чего грунт вспахивают. В грунтах с низкой фильтрующей способностью (глины, тяжелые суглинки) пробуривают скважины, в которые под давлением нагнетают раствор соли. Из-за высокой трудоемкости и стоимости таких работ они являются, как правило, недостаточно эффективными.

Способы оттаивания мерзлого грунта можно классифицировать как по направлению распространения тепла в грунте, так и по применяемому виду теплоносителя. По первому признаку можно выделить следующие три способа оттаивания грунта.

Оттаивание грунта сверху вниз . Этот способ - наименее эффективный, так как источник тепла в этом случае размещается в зоне холодного воздуха, что вызывает большие потери тепла. В то же время этот способ достаточно легко и просто осуществить, он требует минимальных подготовительных работ, в связи с чем, часто применяется на практике.

Оттаивание грунта снизу вверх требует минимального расхода энергии, так как оно происходит под защитой земляной корки и теплопотери при этом практически исключаются. Главный недостаток этого способа - необходимость выполнения трудоемких подготовительных операций, что ограничивает область его применения.

При оттаивании грунта по радиальному направлению тепло распространяется в грунте радиально от вертикально установленных прогревающих элементов, погруженных в грунт. Этот способ по экономическим показателям занимает промежуточное положение между двумя ранее описанными, а для своего осуществления требует также значительных подготовительных работ.

По виду теплоносителя различают следующие способы оттаивания мерзлых грун-

Огневой способ . Для отрывки зимой небольших траншей применяют установку (рис. 1а), состоящую из ряда металлических коробов в форме разрезанных по продольной оси усеченных конусов, из которых собирают сплошную галерею. Первый из коробов представляет собой камеру сгорания, в которой сжигают твердое или жидкое топливо. Вытяжная труба последнего короба обеспечивает тягу, благодаря которой продукты сгорания проходят вдоль галереи и прогревают расположенный под ней грунт. Для уменьшения теплопотерь галерею обсыпают слоем талого грунта или шлака. Полосу оттаявшего грунта засыпают опилками, а дальнейшее оттаивание вглубь продолжается за счет аккумулированного в грунте тепла.

Рисунок 1. Схемы оттаивания грунта огневым способом и паровыми иглами: а

Огневым способом; б - паровыми иглами; 1 - камера сгорания; 2 - вытяжная труба; 3 - обсыпка талым грунтом: 4 - паропровод; 5 - паровой вентиль; 6 - паровая игла; 7 - пробуренная скважина; 8 - колпак.

Оттаивание в тепляках и отражательными печами. Тепляки - это открытые снизу короба с утепленными стенками и крышей, внутри которых размещают спирали накаливания, водяные или паровые батареи, подвешенные к крышке короба. Отражательные печи имеют сверху криволинейную поверхность, в фокусе которой располагается спираль накаливания или излучатель инфракрасных лучей, при этом энергия расходуется более экономично, а оттаивание грунта происходит более интенсивно. Тепляки и отражательные печи питаются от электросети 220 или 380 В. Расход энергии на 1 м 3 оттаянного грунта (в зависимости от его вида, влажности и температуры) колеблется в пределах 100...300 МДж, при этом внутри тепляка поддерживается температура 50...60°С.

При оттаивании грунта горизонтальными электродами по поверхности грун-

та укладывают электроды из полосовой или круглой стали, концы которых отгибают на 15...20 см для подключения к проводам (рис. 2а). Поверхность отогреваемого участка покрывают слоем опилок толщиной 15...20 см, который смачивают солевым раствором с концентрацией 0,2...0,5% с таким расчетом, чтобы масса раствора была не менее массы

опилок. Вначале смоченные опилки представляют собой токопроводящие элементы, так как замерзающий грунт не является проводником. Под воздействием тепла, генерируемого в слое опилок, оттаивает верхний слой грунта, который превращается в проводник тока от электрода к электроду. После этого под воздействием тепла начинает оттаивать верхний слой грунта, а затем - нижние слои. В дальнейшем опилочный слой защищает отогреваемый участок от потерь тепла в атмосферу, для чего слой опилок покрывают полиэтиленовой пленкой или щитами.

Рисунок 2. Схема оттаивания грунта электропрогревом: а - горизонтальными электродами; б - вертикальными электродами; 1 - трехфазная электрическая сеть; 2 - горизонтальные полосовые электроды; 3

Слой опилок, смоченных соленой водой; 4 - слой толя или рубероида; 5 - стержневой электрод.

Этот способ используют при глубине промерзания грунта до 0,7 м, расход электроэнергии на отогрев 1 м3 грунта колеблется от 150 до 300 МДж, температура в опилках не превышает 80... 90 °С.

Оттаивание грунта вертикальными электродами. Электроды представляют собой стержни из арматурной стали с заостренными нижними концами. При глубине промерзания более 0,7 м их забивают в грунт в шахматном порядке на глубину 20 ...25 см, а по мере оттаивания верхних слоев грунта погружают на большую глубину. При оттаивании сверху вниз необходимо систематически убирать снег и устраивать опилочную засыпку, увлажненную солевым раствором. Режим прогрева при стержневых электродах такой же, как и при полосовых, причем во время отключения электроэнергии электроды следует дополнительно заглублять на 1,3... 1,5 м. После отключения электроэнергии в течение 1 ... 2 сут глубина оттаивания продолжает увеличиваться за счет аккумулированного в грунте тепла под защитой опилочного слоя. Расход энергии при этом способе несколько ниже, чем при способе горизонтальных электродов.

Применяя прогрев снизу вверх, до начала прогрева необходимо бурить скважины в шахматном порядке на глубину, превышающую на 15...20 см толщину мерзлого грунта. Расход энергии при отогреве грунта снизу вверх существенно снижается (50... 150 МДж на 1 м3 ), применять слой опилок не требуется. При заглублении стержневых электродов в подстилающий талый грунтуй одновременном устройстве на дневной поверхности опилочной засыпки, пропитанной солевым раствором, оттаивание происходит сверху вниз и снизу вверх. При этом трудоемкость подготовительных работ значительно выше, чем в первых двух вариантах. Применяют этот способ, только когда необходимо экстренно оттаять грунт.

Оттаивание грунта сверху вниз с помощью паровых или водяных регистров. Реги-

стры укладывают непосредственно на расчищенную от снега поверхность отогреваемого участка и закрывают теплоизоляционным слоем из опилок, песка или талого грунта для уменьшения теплопотерь в пространстве. Регистрами оттаивают грунт при толщине мерзлой корки до 0,8 м. Этот способ целесообразен при наличии источников пара или горячей воды, так как монтаж для этой цели специальной котельной установки обычно оказывается слишком дорогим.

Оттаивание грунта паровыми иглами является одним из эффективных средств, но вызывает излишнее увлажнение грунта и повышенный расход тепла. Паровая игла - это металлическая труба длиной 1,5... 2 м, диаметром 25...50мм. На нижнюю часть трубы насажен наконечник с отверстиями диаметром 2...3 мм. Иглы соединяют с паропроводом

гибкими резиновыми рукавами с кранами (рис. 1б). Иглы заглубляют в скважины, предварительно пробуренные на глубину 0,7 глубины оттаивания. Скважины закрывают защитными колпаками из дерева, обшитого кровельной сталью с отверстием, снабженным сальником для пропуска паровой иглы. Пар подают под давлением 0,06... 0,07 МПа. После установки аккумулирующих колпаков прогреваемую поверхность покрывают слоем термоизолирующего материала (например, опилок). Для экономии пара режим прогрева иглами должен быть прерывистым (например, 1 ч - подача пара, 1 ч - перерыв) с поочередной подачей пара в параллельные группы игл. Иглы располагают в шахматном порядке с расстоянием между их центрами 1 ... 1,5 м. Расход пара на 1 м3 грунта 50... 100 кг. Этот способ требует большего расхода тепла, чем способ глубинных электродов, примерно в 2 раза.

При оттаивании грунта водяными циркуляционными иглами в качестве теплоно-

сителя используют воду, нагретую до 50...60°С и циркулирующую по замкнутой системе «котел - разводящие трубы - водяные иглы - обратные трубы - котел». Такая схема обеспечивает наиболее полное использование тепловой энергии. Иглы устанавливают в пробуренные для них скважины. Водяная игла состоит из двух коаксиальных труб, из которых внутренняя имеет внизу открытый, а наружная - заостренный концы. Горячая вода входит в иглу по внутренней трубе, а через нижнее ее отверстие поступает в наружную трубу, по которой поднимается к выходному патрубку, откуда по соединительной трубе идет к следующей игле. Иглы соединяют последовательно по нескольку штук в группы, которые включают параллельно между разводящими и обратными трубопроводами. Оттаивание грунта иглами, в которых циркулирует горячая вода, происходит значительно медленнее, чем вокруг паровых игл. После беспрерывной работы водяных игл в течение 1,5... 2,5 сут их извлекают из грунта, поверхность его утепляют, после чего в течение 1 ...

1,5 сут происходит расширение талых зон за счет аккумулированного тепла. Иглы располагают в шахматном порядке на расстоянии 0,75... 1,25 м между собой и применяют при глубинах промерзания от 1 метра и более.

Оттаивание грунта ТЭНами (электроиглами). ТЭНы представляют собой сталь-

ные трубы длиной около 1 м диаметром до 50 ... 60 мм, которые вставляют в предварительно пробуренные в шахматном порядке скважины.

Внутри игл монтируют нагревательный элемент, изолированный от корпуса трубы. Пространство между нагревательным элементом и стенками иглы заполняют жидкими или твердыми материалами, которые являются диэлектриками, но в то же время хорошо передают и сохраняют тепло. Интенсивность оттаивания грунта зависит от температуры поверхности электроигл, в связи с чем наиболее экономичной является температура 60...80°С, но расход тепла при этом по сравнению с глубинными электродами выше в 1,6...

1,8 раза.

При оттаивании грунта солевыми растворами на поверхности предварительно пробуривают скважины на глубину, подлежащую оттаиванию. Скважины диаметром 0,3...0,4 м располагают в шахматном порядке с шагом около 1 м. В них наливают подогретый до 80...100°С солевой раствор, которым скважины пополняют в течение 3...5 дней. В песчаных грунтах достаточна скважина глубиной 15...20 см, так как раствор проникает вглубь за счет дисперсности грунта. Оттаявшие таким образом грунты после их разработки вторично не смерзаются.

Способ послойного оттаивания вечномерзлых грунтов наиболее целесообразен в весенний период, когда для этих целей можно использовать теплый воздух окружающей атмосферы, теплые дождевые воды, солнечную радиацию. Верхний оттаивающий слой грунта можно удалять любыми землеройно-транспортными или планировочными машинами, обнажая лежащий под ним мерзлый слой, который в свою очередь оттаивает под действием перечисленных выше факторов. Грунт срезают на границе между мерзлым и талым слоями, где грунт имеет ослабленную структуру, что создает благоприятные условия для работы машин. В районах вечной мерзлоты этот способ - один из самых эконо-

мичных и распространенных для разработки грунта при планировке выемок, траншей и т. п.

Способ послойного вымораживания водоносных грунтов предусматривает разра-

ботку до наступления морозов верхнего слоя грунта, лежащего выше горизонта грунтовых вод. Когда под действием холодного атмосферного воздуха расчетная глубина промерзания достигает 40...50 см, приступают к разработке грунта в выемке в мерзлом состоянии. Разработку ведут отдельными участками, между которыми оставляют перемычки из мерзлого грунта толщиной около 0,5 м на глубину около 50 % толщины промерзшего грунта. Перемычки предназначены для изоляции отдельных участков от соседних в случае прорыва грунтовой воды. Фронт разработки перемещается от одной секции к другой, в то время как на уже разработанных секциях глубина промерзания возрастает, после чего разработку их повторяют. Попеременные вымораживание и разработку участков повторяют до достижения проектного уровня, после чего защитные перемычки снимают. Такой способ позволяет разрабатывать при мерзлом состоянии грунта (без крепления и водоотлива) выемки, значительно превосходящие по своей глубине толщину сезонного промерзания грунта.

Предварительное рыхление мерзлого грунта средствами малой механизации при-

меняют при незначительных объемах работ. При больших объемах работ целесообразно использовать механические и мерзлоторезные машины.

Взрывной способ рыхления грунта наиболее экономичен при больших объемах работ, значительной глубине промерзания, в особенности если энергию взрыва используют не только для рыхления, но и для выброса земляных масс в отвал. Но этот способ можно применять только на участках, расположенных вдали от жилых домов и промышленных зданий. При использовании локализаторов взрывной способ рыхления грунтов можно применять и вблизи зданий.

Рисунок 3. Схемы рыхления и резания мерзлого грунта: а - рыхление клином-молотом; б - рыхление дизель-молотом; в - резка в мерзлом грунте щелей многоковшовым экскаватором, оборудованным режущими цепями - барами; 1 - клин-молот; 2 - экскаватор; 3 - мерзлый слой грунта; 4- направляющая штанга; 5 - дизель-молот; 6 - режущие цепи (бары); 7 - многоковшовый экскаватор; 8 - щели в мерзлом грунте.

Механическое рыхление мерзлых грунтов применяют при отрывке небольших по объему котлованов и траншей. В этих случаях мерзлый грунт на глубину 0,5...0,7 м рыхлят клином-молотом (рис. 3a), подвешенным к стреле экскаватора (драглайна), - так называемое рыхление раскалыванием. При работе с таким молотом стрелу устанавливают под углом не менее 60°, что обеспечивает достаточную высоту падения молота. При использовании молотов свободного падения из-за динамической перегрузки быстро изнашиваются стальной канат, тележка и отдельные узлы машины; кроме того, от удара по грунту колебания его могут вредно действовать на близко расположенные сооружения. Механическими рыхлителями рыхлят грунт при глубине промерзания более 0,4 м. В этом случае грунты рыхлят путем скола или нарезки блоков, причем трудоемкость разрушения грунта сколом в несколько раз меньше, чем при рыхлении грунтов резанием. Число уда-

ров по одному следу зависит от глубины промерзания, группы грунта, массы молота (2250…3000 кг), высоты подъема, определяют его ударником конструкции ДорНИИ.

Дизель-молоты (рис. 3б) могут рыхлить грунт при глубине промерзания до 1,3 м и наравне с клиньями являются навесным оборудованием к экскаватору, тракторупогрузчику и трактору. Рыхлить мерзлый грунт дизель-молотом можно по двум технологическим схемам. По первой схеме дизель-молот рыхлит мерзлый слой, двигаясь зигзагом по точкам, расположенным в шахматном порядке с шагом 0,8 м. При этом сферы дробления от каждой рабочей стоянки сливаются между собой, образуя сплошной разрыхленный слой, подготовленный для последующей разработки. Вторая схема требует предварительной подготовки открытой стенки забоя, разрабатываемого экскаватором, после чего ди- зель-молот устанавливают на расстоянии примерно 1 м от бровки забоя и наносят им удары по одному месту до тех пор, пока не произойдет скол глыбы мерзлого грунта. Затем дизель-молот перемещают вдоль бровки, повторяя эту операцию.

Ударные мерзлоторыхлители (рис. 4б) хорошо работают при низких температурах грунта, когда для него характерны не пластичные, а хрупкие деформации, способствующие его раскалыванию под действием удара.

Рыхление грунта тракторными рыхлителями. К этой группе относится оборудование, у которого непрерывное режущее усилие ножа создается за счет тягового, усилия трактора-тягача. Машины этого типа послойно проходят мерзлый грунт, обеспечивая за каждую проходку глубину рыхления 0,3...0,4 м: Поэтому разрабатывают мерзлый слой, предварительно разрыхленный такими машинами, как бульдозеры. В противоположность ударным рыхлителям статические рыхлители хорошо работают при высоких температурах грунта, когда он имеет значительные пластические деформации, а механическая прочность его понижена. Статические рыхлители могут быть прицепными и навесными (на заднем мосту трактора). Очень часто их используют совместно с бульдозером, который может в этом случае попеременно рыхлить или разрабатывать грунт. Прицепной рыхлитель при этом отцепляют, а навесной поднимают. В зависимости от мощности двигателя и механических свойств мерзлого грунта число зубьев рыхлителя колеблется от 1 до 5, причем чаще всего пользуются одним зубом. Для эффективной работы тракторного рыхлителя на мерзлом грунте необходимо, чтобы двигатель имел достаточную мощность (100...180 кВт). Рыхлят грунт параллельными (примерно через 0,5 м) проходками с последующими поперечными проходками под углом 60...90° к предыдущим.

Рисунок 4. Схемы разработки мерзлых грунтов с предварительным рыхлением: а - рыхление клин-молотом; б - тракторным виброклиновым рыхлителем; 1 - автосамосвал; 2 - экскаватор; 3 - клин-молот; 4 – виброклин.

Мерзлый грунт, разрыхленный перекрестными проходками одностоечного рыхлителя, можно успешно разрабатывать тракторным скрепером, причем этот способ считается весьма экономичным и с успехом конкурирует с буровзрывным способом.

При разработке мерзлых грунтов с предварительной нарезкой блоками в мерзлом слое нарезают щели (рис. 5), разделяющие грунт на отдельные блоки, которые затем удаляют экскаватором или строительными кранами. Глубина прорезаемых в мерзлом слое щелей должна составлять примерно 0,8 глубины промерзания, так как ослабленный слой на границе мерзлой и талой зон не является препятствием для разработки экскаватором. В районах с вечно-мерзлыми грунтами, где подстилающий слой отсутствует, метод блочной разработки не применяют.

Рисунок 5. Схемы разработки мерзлых грунтов блочным способом: а, б - мелкоблочным способом; в, г - крупноблочным; 1 - удаление снежного покрова; 2, 3 - нарезка блоков мерзлого грунта баровой машиной; 4 - разработка мелких блоков экскаватором или бульдозером; 5 - разработка талого грунта; 6 - разработка крупных блоков мерзлого грунта трактором; 7 - то же, краном.

Расстояния между нарезанными щелями зависят от размеров ковша экскаватора (размеры блоков должны быть на 10... 15% меньше ширины зева ковша экскаватора). Блоки отгружают экскаваторами с ковшами вместимостью от 0,5 м и выше, оборудованными преимущественно обратной лопатой, так как выгрузка блоков из ковша прямой лопатой очень затруднена. Для нарезки щелей в грунте применяют различное оборудование, устанавливаемое на экскаваторах и тракторах.

Нарезать щели в мерзлом грунте можно с помощью роторных экскаваторов, у которых ковшовый ротор заменен фрезерующими дисками, снабженными зубьями. Для этой же цели применяют дискофрезерные машины (рис. 6), являющиеся навесным оборудованием к трактору.

Рисунок 6. Дискофрезерная землеройная машина: 1 - трактор; 2 - система передачи и управления рабочим органом; 3 - рабочий орган машины (фреза).

Наиболее эффективно нарезать щели в мерзлом грунте баровыми машинами (рис. 5), рабочий орган которых состоит из врубовой цепи, смонтированной на базе трактора или траншейного экскаватора. Баровые машины прорезают щели глубиной 1,3 ... 1,7 м. Достоинством цепных машин по сравнению с дисковыми является относительная легкость замены наиболее быстро изнашивающихся частей рабочего органа - сменных, вставляемых во врубовую цепь зубьев.

Основной целью прогрева бетона является соблюдение правильных условий вывода влаги при проведении работ в зимнее время или при их ограниченных сроках. Принцип действия технологии заключается в поддержке внутри или вокруг толщи раствора повышенной температуры (в пределах 50-60 °С), методы реализации зависят от типа и размера конструкций, марки прочности смеси, бюджета и условий внешней среды. Для достижения нужного эффекта обогрев должен быть равномерным и экономически обоснованным, лучшие результаты наблюдаются при комбинировании.

Обзор методов обогрева

1. Электроды.

Простой и надежный способ электропрогрева, заключающийся в размещении арматуры или катанки толщиной в 0,8-1 см во влажном растворе, образуя с ним единый проводник. Выделение тепла происходит равномерно, зона воздействия достигает половины расстояния от одного электрода к другому. Рекомендуемый интервал между ними варьируется от 0,6 до 1 м. Для запуска работы цепи концы подключают к ИП с пониженным напряжением от 60 до 127 В, превышение этого диапазона возможно только при бетонировании неармированных систем.

Сфера применения включает конструкции с любым объемом, но максимальный эффект достигается при подогреве стен и колонн. Расход электроэнергии в этом случае значительный – 1 электрод требует не менее 45 А, число подключаемых стержней к понижающему трансформатору ограничено. По мере высыхания раствора подаваемое напряжение и затраты возрастают. При заливке ЖБИ технология прогрева электродами требует согласования со специалистами (составляется проект их размещения, исключающий контакт с металлическим каркасом). По окончании процесса стержни остаются внутри, повторная эксплуатация исключена.

2. Закладка проводов.

Суть метода заключается в расположении в толще раствора электрического провода (в отличие от электродов – изолированного), нагреваемого при пропускании тока и равномерно отдающего тепло. В качестве рабочих элементов используется один из следующих видов:

  • ПНСВ – изолированный поливинилхлоридом стальной кабель.
  • Саморегулирующие секционные разновидности: КДБС или ВЕТ.

Применение проводов считается самым эффективным при необходимости заливки перекрытий или фундамента зимой, они практически без потерь преобразуют электрическую энергию в тепловую и обеспечивают ее равномерное распределение.

ПНСВ обходится дешевле, при необходимости он закладывается по всей площади конструкции (длина ограничена только мощностью понижающего трансформатора), для данных целей подойдет сечение от 1,2 до 3 мм. К особенности технологии обогрева относят потребность в использовании установочных проводов с алюминиевой жилой на открытых участках. Подходящими характеристиками обладает кабель АПВ. Схема ПНСВ 1.2 исключает перехлесты, рекомендуемый шаг между соседними кольцами и линиями составляет 15 см.

Саморегулирующие секции (КДБС или ВЕТ) эффективны при обогреве зимой без возможностей задействования трансформатора или подачи 380 В. Их изоляция лучше, чем у ПНСВ, но стоят они дороже. Схема укладки провода в целом аналогична предыдущей, но его длина ограничена, она подбирается из учета размеров конструкции, разрезать его нельзя. При добавлении в нее устройства контроля за силой тока прогрев осуществляется более плавно и экономно. В целом, оба варианта считаются эффективными при бетонировании зимой, к недостаткам относят лишь сложность укладки и невозможность повторного применения.

3. Тепловые пушки.

Суть технологии заключается в повышении температуры воздуха с помощью электрических, газовых, дизельных и других обогревателей. Обрабатываемые элементы закрывают от холода брезентом, создание такого шатра позволяет достичь внутри условий от +35 до 70 °C. Обогрев осуществляется за счет внешнего источника, который без проблем переносится на другое место без потребности в расходе провода или специальной аппаратуры. Из-за сложностей с закрытием крупных объектов и воздействия только на внешние слои этот способ чаще используется при небольших объемах бетонирования или при резком падении температуры. Энергозатраты в сравнении с электродами или ПНСВ приемлемые, при задействовании дизельных пушек возможен обогрев на объектах без электроснабжения.

4. Термоматы.

Принцип действия этой технологии основан на покрытии свежезалитого раствора полиэтиленом и полотнами инфракрасной пленки во влагостойкой оболочке. Термоматы подключаются к обычной сети, величина энергопотребления варьируется в пределах 400-800 Вт/м2, при достижении границы в +55 °С они выключаются, что позволяет снизить затраты на электропрогрев бетона. Максимальный эффект от применения достигается зимой, в том числе при комбинировании с химическими добавками.

Риск замерзания влаги внутри ЖБИ исключается через 12 часов, процесс полностью автономный. В отличие от проводов ПНСВ термоматы без проблем контактируют с открытым воздухом и влагой, помимо бетонных конструкций они успешно используются для прогрева грунта.

При правильном уходе (отсутствие нахлестов, выполнение изгибов строго по отведенным линиям, защите полиэтиленом) ИК-пленки выдерживают не менее 1 года активной эксплуатации. Но при всех плюсах технология плохо подходит для обогрева массивных монолитов, воздействие матов локальное.

5. Греющая опалубка.

Принцип действия аналогичен с предыдущим: между двумя листами влагостойкой фанеры размещается инфракрасная пленка или изолированные асбестом провода, выделяющие тепло при подключении к сети. Этот способ обеспечивает прогрев в зимнее время на глубину до 60 мм, благодаря локальному воздействию исключен риск растрескивания или перенапряжения. По аналогии с матами эти нагревательные элементы имеют термозащиту (биметаллические датчики с автовозвратом). Сфера применения включает конструкции с любым наклоном, лучшие результаты наблюдаются при заливке монолитных объектов, в том числе при ограниченных сроках строительства, но простой технологию назвать нельзя. При бетонировании фундамента в греющую опалубку заливают раствор с температурой не ниже +15 °C, грунт нуждается в предварительном обогреве.

6. Индукционный метод.

Принцип действия основан на образовании тепловой энергии под воздействием вихревых токов, способ хорошо подходит для колонн, балок, опор и других вытянутых элементов. Индукционная обмотка размещается поверх металлической опалубки и создает электромагнитное поле, в свою очередь оказывающее влияние на арматурные стержни каркаса. Обогрев бетона осуществляется равномерно и качественно при среднем расходе энергии. Подойдет также для предварительной подготовки щитов опалубки зимой.

7. Пропаривание.

Промышленный вариант, для реализации этого способа требуется двухстенная опалубка, не только выдерживающая массу раствора, но и подводящая к поверхности горячий пар. Качество обработки более чем высокое, в отличие от остальных методов, при пропарке обеспечиваются максимально подходящие условия для гидратации цемента, а именно – влажная горячая среда. Но из-за сложности эта методика используется редко.

Сравнение преимуществ и ограничений технологий прогревания

Способ Оптимальная сфера применения Преимущества Недостатки, ограничения
Электродами Заливка вертикальных конструкций Быстрый монтаж и прогрев, достаточно размещения электрода в бетоне и подключения его к источнику переменного тока Значительные энергозатраты – от 1000 кВт на 3-5 м3
ПНСВ Фундаменты и перекрытия при бетонировании зимой Высокая эффективность, равномерность. Обогрев проводом позволяет достичь 70% прочности за несколько дней Потребность в понижающем трансформаторе и проводе для холодных концов
ВЕТ или КДБС То же, плюс работа от простой сети Высокая стоимость кабеля, ограничение в длине секций
Тепловыми излучателями Конструкции с небольшой толщиной Возможность контроля температуры, применение при резком похолодании, минимум проводов, относительно низкие энергозатраты Воздействие осуществляется локально, качественный обогрев происходит только во внешних слоях
Термоматами Грунт перед заливкой раствора, перекрытия Многократное применение, возможность контроля за температурой смести, достижение 30% марочной прочности в течении суток Высокая стоимость матов, наличие подделок
Греющей опалубкой Объекты быстрого возведения (совмещение с технологией скользящей опалубки) Обеспечение равномерного прогрева, возможность качественного замоноличивания стыков Типовые размеры, высокая цена, средний КПД
Индукционной обмоткой Колонны, ригели, балки, опоры Равномерность Не подходит для перекрытий и монолитов
Пропаривание Объекты промышленного строительства Хорошее качество прогрева Сложность, дороговизна

Теплом своим отогревая землю… (Часть 1)

Оборудование и методы прогрева мерзлых грунтов при производстве земляных работ

Как известно, в зимнее время грунт порой промерзает так, что его не берет даже экскаватор и гидромолот. К тому же в населенных пунктах в грунте находятся подземные коммуникации, которые могут быть повреждены при ударных воздействиях на грунт. Поэтому мерзлый грунт должен быть предварительно отогрет. Существует ряд способов прогрева мерзлого грунта. Каждый из них имеет свои достоинства и недостатки.

Способы оттаивания мерзлого грунта классифицируются по направлению подачи тепла в грунт и виду используемого теплоносителя.

Оттаивание сверху вниз. Этот способ наименее эффективный, так как источник тепла в этом случае размещается в зоне холодного воздуха, что вызывает большие потери тепла. В то же время его достаточно легко и просто осуществить, он требует минимальных подготовительных работ, в связи с чем часто применяется на практике.

Оттаивание снизу вверх предполагает бурение скважин, в которые опускаются источники тепла. Расход энергии в этом случае минимальный, т. к. благодаря слою грунта потерь тепла практически нет. Некоторые специалисты даже считают, что не требуется утеплять сверху обрабатываемую площадь слоем опилок и т. п. материалов. Главный недостаток этого способа – трудоемкие подготовительные операции, это ограничивает область его применения.

Оттаивание по радиальному направлению. В этом случае тепло распространяется в грунте перпендикулярно от вертикально погруженных в грунт источников энергии. Этот способ по экономическим показателям занимает промежуточное положение между двумя ранее описанными, а для осуществления также требует значительных подготовительных работ.

Независимо от принятого способа отогреваемая поверхность предварительно очищается от снега, льда и верхних покровов основания (асфальт, бетон).

Термоэлектрические маты

Маты термоэлектрические (термоматы) – это инфракрасные нагреватели, многофункциональное и экологичное вспомогательное строительное оборудование, они позволяют эффективно прогревать грунт и застывающий бетон при небольшом потреблении энергии, поддерживают заданную температуру в автоматическом режиме, а некоторые модели могут использоваться для растапливания снега и льда. В конструкцию термоматов входят греющая пленка, излучающая тепло в инфракрасном диапазоне, с теплоизоляцией, представляющая собой многослойный «сэндвич» из полипропилена или пенополиэтилена толщиной 6–10 мм, ограничители для поддержания постоянной температуры и грязеводонепроницаемая ПВХ-оболочка с герметично запаянными швами, устойчивая к неблагоприятным атмосферным воздействиям. Выпускаются в виде прямоугольных полотнищ различной площади и рулонов значительной длины.

Возможности термоматов. Многие западные и отечественные специалисты считают, что прогрев грунта термоэлектрическими и термоизоляционными матамиоптимальная технология для оттаивания больших площадей мерзлого грунта и льда. Они могут работать от однофазных источников электроэнергии с напряжением 220 В. Работают лучше, чем солнце в весенний день, – 24 часа 7 дней в неделю. Способны нагревать грунт до температур на 50–80 °С выше температуры окружающего воздуха и прогревают сильно промерзший грунт на глубину до 450–800 мм за 20–72 часа работы в зависимости от температуры воздуха и свойств грунта. Снег и лед превращаются в воду, которая впитывается в грунт и размораживает нижележащие слои грунта. Они способны разморозить замерзшие канализационные трубы на глубине до 2,5 м. Допустимая температура работы термоматов может составлять до –35 °С. Удельная мощность, излучаемая термоматами, может достигать нескольких сот ватт на 1 м 2 . За счет проникающих свойств и направленного действия инфракрасного излучения, а также контактной передачи тепла от поверхности термомата прогрев грунта происходит с высокой эффективностью одновременно сразу на всю глубину промерзания.

Компания «Тепловые системы» (г. Москва), входящая в ГК «AKKURAT», занимается разработкой, испытаниями и производством термоэлектрических матов ТЭМ для ускорения твердения бетона и для прогрева грунта. Кроме того, термоматы применяются и для выполнения других задач, например, обогрева емкостей, прогрева каменной кладки и т. д.

Термоэлектрические маты изготавливаются по собственному патенту с использованием качественной инфракрасной пленки Marpe Рower 305 повышенной мощности (400, 600 и 800 Вт/м 2), которая производится южнокорейской компанией Green Industry Co. Напряжение питания 220 В/ 50 Гц. Допускается эксплуатация при температуре окружающей среды от –60 до +40 °С и относительной влажности до 100%.

Главное условие правильной эксплуатации термоматов – это плотное прилегание рабочей поверхности термомата к обогреваемому объекту (бетону или грунту). Время набора критической прочности (70%) для бетонной плиты толщиной 200 мм составляет порядка 12 ч; время прогрева замерзшего грунта – от 20 до 36 ч.

Результаты испытаний. В технической литературе приводятся описания испытаний одной из моделей термоматов размером 1,2х3,2 м и мощностью 800 Вт/м 2 . Эксперимент проводился в конце зимы, в период наибольшего промерзания грунта. Прогрев грунта термоматами происходил в автоматическом режиме при температуре воздуха –20 °С, начальной температуре грунта –18 °С, верхний слой грунта в 20 см состоял из смеси глины, песка и шлака, далее шла чистая глина. Участок был очищен от снега, поверхность максимально выровнена, на нее уложена полиэтиленовая пленка. Далее укладывались термоматы один вплотную к другому без перекрытия и подключались к электропитанию по «параллельной» схеме. В первые часы все выделенное тепло поглощалось грунтом, и термоматы работали не отключаясь, затем, с прогревом поверхности грунта до 70 °С, термоматы начинали отключаться, а когда температура термомата опускалась до 55–60 °С, он снова включался. На время прогрева влияют начальные условия (температура воздуха и грунта) и свойства грунта (теплопровод­ность, влажность). Испытания показали, что для прогрева данного грунта на глубину 600 мм необходимо от 20 до 32 ч.

Термоматы создают стабильный тепловой поток, что является необходимым условием качественного затвердевания бетона в зимнее и летнее время и исключает появление температурных трещин. Марочный бетон за 11 ч набирает прочность, которую он приобрел бы за 28 суток в естественных условиях. Высокая скорость схватывания бетона достигается за счет проникновения инфракрасных лучей в толщу бетонной массы.

Применение. Маты раскатываются из рулонов, подключаются к источнику электроэнергии. Чтобы повысить эффективность их работы, сверху рекомендуется расстелить теплоизоляционные защитные маты, сохраняющие тепло и защищающие от ветра. Во избежание перегрева и прогара термомата необходимо обеспечить плотное прилегание термомата к прогреваемой поверхности. Не допускается размещение между матом и обогреваемым объектом каких-либо теплоизолирующих материалов, препятствующих передаче тепла к объекту.

ООО «Завод «УралСпецГрупп» (г. Миасс) предлагает термоматы со встроенными датчиками ограничения температуры для прогрева бетона и грунта мощностью 400 и 800 Вт/м 2 соответственно. Термоматы могут состоять из нескольких независимых секций. Каждая секция имеет свой терморегулятор-ограничитель и поддерживает температуру нагрева в определенном диапазоне.

За счет равномерного распределения тепла на прогреваемой поверхности и автоматического контроля температуры значительно ускоряется рост прочности бетона. Сроки выдерживания бетона до набора марочной прочности составляют от 10 ч до 2 суток. Температура нагрева матов не выше +70 °С. Условия эксплуатации: температура окружающей среды от –40 до +40 °С, относительная влажность до 100%.

Преимущества термоматов. Оборудование не требует предварительной подготовки и полностью готово к работе; относительно невысокая стоимость; простота настройки и обслуживания; малый вес и удобство в эксплуатации, от работников не требуется специальных навыков; высокий КПД и низкое энергопотребление, например, 0,5 кВт.ч на 1 м 2 . Термоэлектроматы полностью безопасны. В каждом сегменте термомата есть термоограничитель, температура не поднимется выше заданной. Оборудование не загрязняет окружающую среду. По требованию заказчика термоматы могут производиться с индивидуальными параметрами мощности и размеров.

Недостатки термоматов. Необходимость обеспечения электропитания и постоянного контроля работы оборудования; отсутствие антивандальной защиты, относительная нестойкость к повреждениям.

Гидравлические станции для прогрева грунта

Если нужно прогреть грунт зимой на большой площади, например, под устройство бетонной подушки в 400 м 2 и более, обычными способами – термоматами, инфракрасными излучателями, тепловыми пушками, навряд ли получится разогреть такую массу земли на такой площади. Скорее всего здесь будет эффективна технология прогрева земли с помощью парникового эффекта, который создается гидравлическими станциями. В настоящее время западные компании широко применяют технологию размораживания грунтов гидравлическими станциями в зимний период для проведения землеройных и бетонных работ. Компактные гидравлические станции для прогрева грунта появились на мировом рынке строительного оборудования около 15 лет назад.

Конструкция и работа установки. Сама установка представляет собой мобильную мини-котельную. Прицеп, на котором размещается гидравлическая станция, устанавливается как можно ближе к участку, который должен прогреваться.

Прогреваемая поверхность расчищается от снега. Тщательная расчистка позволит сократить время оттаивания на 30%, сэкономит топливо, избавит от грязи и лишней талой воды, затрудняющей дальнейшее ведение работ. Включается котел, в котором нагревается теплоноситель. В качестве теплоносителя чаще всего используют воду, но на Западе в ходу и водно-гликолевая или пропилен-гликолевая смесь. Максимальная температура нагрева теплоносителя в современных установках (в зависимости от производителя) находится в пределах 75–90 °С. Цифровой термостат позволяет оператору просто регулировать температуру теплоносителя. Нагревательный котел оснащается горелкой, работающей на газе или дизельном топливе. Нагретый до заданной температуры теплоноситель поступает в термоизолированную емкость. Из емкости теплоноситель с помощью насоса нагнетается в нагревающие шланги.

Нагревающие шланги разматываются из катушки. Рекомендуется укладывать их «змейкой» в 2–4 ряда в зависимости от того, какой интенсивности требуется прогрев. Чем меньше расстояние между витками (например, 450 мм), тем меньше времени потребуется на прогрев поверхности. В зависимости от межшлангового расстояния можно добиться нужной площади и скорости прогрева. Входы и выходы шлангов подсоединяются к распределительному коллектору станции так, чтобы теплоноситель циркулировал через них по замкнутому контуру. В принципе, шланги можно укладывать по произвольной схеме, по форме и рельефу прогреваемой поверхности тоже ограничений нет.

Дизельная станция размораживания грунта и прогрева бетона СРГПБ.СИ.350 производства ЗАО «СИ» (г. Москва). Тепловая мощность – 31 кВт/ч. Тепловой к.п.д. составляет 85%. Может непрерывно работать в течение 120 ч. Объем системы теплоносителя – 190 л. Рабочая температура системы обогрева: 37–82 °C. Рабочее давление в системе обогрева: 4,7–6,2 бар. Длина греющего шланга – 360 м. Производительность циркуляционного насоса – 1010 л/ч. Площадь размораживания и прогрева – от 104 до 210 м 2 . Площадь размораживания с дополнительной увеличенной катушкой хранения рукава и насосом – от 310 до 620 м 2 . Позволяет прогревать грунт до 400 мм в глубину за 24 ч. Смонтирована на одноосном шасси прицепа. Масса установки, заправленной топливом, 1402 кг.

Шланги армированы синтетическим волокном и обладают исключительной гибкостью и прочностью на разрыв. Исправность и готовность оборудования к работе контролируется встроенными датчиками. Шланги и прогреваемый участок обязательно закрываются паронепроницаемой или полиэтиленовой пленкой внахлест (особенно важно при работе с бетоном) и теплоизолирующими матами (утеплителем), чтобы создать «парниковый эффект» и уменьшить потери тепла в окружающий воздух. Чем тщательнее будет изолирована прогреваемая поверхность, тем меньше потребуется времени, чтобы прогреть грунт. Пленка не позволит нагретой воде испариться. Талая вода растопит лед в нижних слоях грунта.

Время подготовки к прогреву занимает всего лишь около 30 минут. Открывается кран – и нагрев пошел! В гидравлических станциях некоторых производителей есть возможность при необходимости увеличить в несколько раз номинальную площадь прогрева грунта за счет подключения дополнительного насоса и дополнительных шлангов. Прогрев мерзлого грунта осуществляется в относительно короткие сроки – 20–30 ч, но при необходимости возможна непрерывная эксплуатация таких установок и до 60–130 ч. Такая установка имеет к.п.д. до 94%, то есть практически все тепло, вырабатываемое установкой, идет на прогрев грунта. Средняя скорость размораживания грунта подобным методом составляет 300–600 мм в глубину в сутки. Однако при более плотной укладке нагревательных рукавов и тщательной теплоизоляции можно увеличить темп размораживания.

Прочие возможности применения. Вскоре после начала использования этой технологии выяснилось, что гидравлические станции также помогают ускорить процесс застывания бетона зимой, не давая влаге в бетоне превратиться в лед даже при температурах от –30 до –40 °С. Бетону для застывания требуется тепло: чем теплее будет бетон, тем скорее он отвердеет, оптимальная температура для застывания от +20 до +25 °С. В сильный мороз бетон будет твердеть очень долго и потеряет качество. Кроме того, прогревающие гидравлические станции можно использовать для обогрева теплиц и цветников, отопления помещений, предотвращения обледенения футбольных полей и т. д.

В России для работы на больших площадках широкое применение находят гидравлические установки для отогрева грунта Wacker Neuson E350 и E700 , HSH 700 G . Установки сертифицированы в России и не требуют специальных допусков для оператора.

Гидравлическая станция для прогрева поверхности Wacker Neuson HSH 350 имеет массу (с топливом) 1500 кг. Производительность нагревателя (брутто) 30 кВт. При идеальных условиях к.п.д. может достигать 94%. Длина шланга – 350–700 м.

Установка серии HSH может размораживать замерзшую почву, а также проводить обработку бетона даже при отрицательных температурах. Возможность непрерывной эксплуатации – до 63 ч. При использовании дополнительного оборудования можно обеспечить оттаивание почвы площадью до 300 м 2 и прогреть до 612 м 2 бетона. Устройство HSH смонтировано на прицепе.




Преимущества и недостатки. Преимуществами данной технологии перед другими методами являются: возможность отогревать значительные площади грунта; простота в эксплуатации, обслуживании и хранении оборудования; использование оборудования не требует специфических знаний, навыков и длительного обучения персонала; автономность, мобильность и многофункциональность оборудования; стабильность результатов при производстве работ; минимальные трудовые и материальные затраты на подготовку прогреваемой поверхности; экологичность и безопасность – нет опасности поражения электрическим током и горячим теплоносителем, не создает магнитных полей, прогревающие шланги полностью герметичны.

К недостаткам можно отнести высокую стоимость оборудования (2–3 млн руб.), необходимость постоянного присутствия оператора при производстве работ.

Если гидравлическая станция требуется для разового применения или не часто, можно взять ее в аренду. Благодаря указанным выше преимуществам средства, затраченные на аренду, окупятся очень быстро. Обычно стоит компании один раз попробовать использовать подобную гидравлическую станцию, как она становится приверженцем технологии гидравлического прогрева грунта.

Тепляк/ шатер и нагревательное оборудование

Прогрев горячим воздухом. Довольно простой и доступный метод прогрева грунта – с помощью горячего воздуха – позволяет размораживать грунт в самое холодное время. Предварительно с отогреваемого участка необходимо убрать снег. Над участком возводится временное строение – тепляк или шатер. Тепляк – временное каркасно-тентовое строительное укрытие для гидро- и теплоизоляции. Применяется при выполнении строительных работ. Внутри устанавливается дизельная, газовая или электрическая тепловая пушка, газовая горелка или печка. Воздух в тепляке/ шатре может нагреваться до 50–65 °C. Стены и крышу тепляка/ шатра можно накрыть имеющимися тепло­изолирующими материалами или даже лапником из леса.



В нашей стране выпускаются тепловые пушки под брендом Hyundai . Например, тепловая пушка Hyundai H-HG7-50-UI712 с нагревательным элементом ТЭН мощностью 4,5 кВт. Агрегат имеет режимы работы: вентиляция, интенсивный и экономичный обогрев. Температура воздуха на выходе по сравнению со входом увеличивается на 32 °С. Производительность – 420 м 3 /ч воздуха. Продолжительность работы/ пауза – 22/ 2 ч. Есть датчик защиты от перегрева.

Преимущества . Соорудить такое временное помещение или развернуть такую установку намного проще и требуется меньше трудозатрат, чем на оборудование для прогрева грунта других типов. Одновременно с размораживанием эта установка подсушивает грунт, и его становится легче копать. Западные производители такого оборудования утверждают, что их установки прогревают и высушивают грунт быстрее в два раза, чем при использовании гидравлических станций со шлангами, по которым циркулирует горячий теплоноситель.

Недостаток . Слабая теплоизоляция, отсюда большие потери тепла, воздушные тепловые пушки передают грунту всего около 15% тепловой энергии.

Итальянская компания Master Climate Solutions (входит в Dantherm Group) выпускает на заводе в Италии нагреватели воздуха под брендом MASTER . Дизельные тепловые пушки с прямым и непрямым нагревом, а также газовые и электрические тепловые пушки. Некоторые из пушек с дизельным нагревом оборудуются специальным гнездовым термостатом ТН-1, который устанавливается непосредственно на изделии, или с термостатом ТН-2, который подключается с помощью кабеля. Агрегаты способны непрерывно работать длительное время практически со 100%-ным к.п.д.

Например, дизельная тепловая пушка прямого нагрева MASTER B 150 CED мощностью 44 кВт развивает поток воздуха 900 м 3 /ч, расход топлива 3,7 кг/ч, температура воздуха на выходе 300 °С, масса установки 30,3 кг. Работает без дозаправки в течение 13 ч. Оснащена устройством автоматического управления горением с фотоэлементом и системой безопасности горелки и нагревателя. Внешний корпус нагревателя остается холодным.

Открытое пламя. Использование для размораживания грунта открытого пламени, или «огневой способ», основан на оттаивании грунта путем сжигания твердого или жидкого топлива в агрегате, состоящем из галереи металлических коробов в форме полукруга или усеченных конусов.

Короба могут изготавливаться из листовой стали толщиной 1,5–2,5 мм или из подручных материалов, например из разрезанных по длине металлических бочек. Первый из коробов выполняет роль камеры сгорания, в которой сжигают любое твердое или жидкое топливо. Например, в камере сгорания устанавливается газовая горелка (форсунка), соединенная шлангом с газовым баллоном. Газовая горелка, применяемая для этой цели, может представлять собой просто отрезок стальной трубки диаметром 18 мм со сплюснутым конусом. Вытяжная труба последнего короба обеспечивает тягу, благодаря которой продукты сгорания проходят вдоль галереи и прогревают расположенный под ней грунт. Для уменьшения тепловых потерь галерею утепляют талым грунтом слоем толщиной до 100 мм, шлаком или другими материалами.

В продаже сейчас имеется множество современных горелок. Например горелка Giersch RG 20-Z-L-F (Германия) с двухступенчатым регулированием мощности 40–120 кВт. Работает на природном и сжиженном газе. Электропитание – 220 В, максимальный потребляемый ток – 2,6 А. Мощность электродвигателя – 180 Вт. Звукоизоляция встроенная, имеется датчик контроля давления воздуха. Может устанавливаться и в вертикальном положении.

При длине коробов 20–25 м установка за сутки дает возможность отогреть грунт на глубине 0,7–0,8 м. Специалисты приводят такие данные: расход дизтоплива на разогрев 1 м 3 грунта составляет 4–5 кг. Подогрев пламенем рекомендуется проводить в течение 15–16 ч. Затем, после демонтажа коробов, полосу оттаявшего грунта засыпают опилками, чтобы оттаивание продолжалось вглубь за счет передачи аккумулированного в грунте тепла.

Недостатки данной технологии: громоздкое, неудобное для транспортировки оборудование; метод может применяться для выемки только относительно узких и неглубоких траншей, т. к. позволяет прогревать лишь участки небольшой площади. Прогрев такими горелками большого участка обойдется очень дорого. Процесс размораживания длится долго. Необходимо выполнять вспомогательные работы по обустройству (и разборке) конструкции. Необходимо постоянно контролировать процесс и соблюдение техники безопасности. Большие тепловые потери, малая эффективность использования топлива. Вредные выбросы от сжигаемого топлива, вследствие этого запрет на использование этого способа в городах

Преимущества . Их немного. Можно собрать такую «установку» из подручных материалов и отапливать отходами строительства – обрезками досок, горючим мусором. Преимуществами применения газа по сравнению с дизельными горелками являются меньшая цена и меньшее количество вредных выбросов и дыма.

Универсальная газовая горелка Roca CRONO-G 15G (Испания) работает на сжиженном и природном газе, максимально безопасна в работе. Перед зажиганием производится продувка воздухом камеры сгорания. Возможна одноступенчатая, двухступенчатая или модулируемая регулировка мощности. Мощность – 65–189 кВт. Расход топлива – 6,5–18,9 кг/ч. Мощность электродвигателя – 350 Вт. Электрическое питание – 220 В. Масса – 15 кг.

Отражательные печи. Как показал опыт, при ремонте коммунальных городских сетей наиболее удобным и быстрым является метод отогрева мерзлого грунта отражательными (рефлекторными) печами, которые подвешиваются изнутри к крыше тепляка – открытого снизу короба с утепленными стенками и крышей.

Отражательные печи имеют сверху рефлектор параболической формы из алюминиевого, дюралюминиевого или стального хромированного листа толщиной 1 мм. В фокусе параболы, который находится на расстоянии 60 мм от рефлектора, располагается источник тепловых лучей: электрическая спираль накаливания, водяная или паровая батарея. Рефлектор фокусирует тепловые лучи на нижележащем участке земли, за счет этого энергия расходуется более экономично, а оттаивание грунта происходит более интенсивно, чем при нагреве теплым воздухом. Сверху печь закрывается стальным кожухом, защищающим рефлектор от механических повреждений. Между кожухом и рефлектором имеется прослойка воздуха, улучшающая теплоизоляцию печи. Спираль накаливания изготавливается из нихромовой или фехралевой проволоки диаметром 3,5 мм, навитой спиралью на изолированную асбестом стальную трубу. Нихром (Ni-Cr и Ni-Cr-Fe) получил название от никеля («ни») и хрома («хром») в своем составе, а фехраль (Fe-Cr-Al) назван по первым буквам основных элементов («фе», «хр», «аль»). На современном рынке фехраль дешевле нихрома, как минимум, в 3–5 раз. Однако нихром способен выдержать большее количество циклов включения-выключения нагревательных элементов до их перегорания.

Применение тепляков и рефлекторов. При использовании рефлекторных печей необходимо обеспечить без­опасные условия производства работ. Место отогрева должно быть ограждено, контактные зажимы для присоединения проводом закрыты, а спирали течи не должны касаться грунта.

Тепляки и отражательные печи могут питаться от электросети напряжением 380 или 220 В. В случае, если питание ТЭНов производится от трехфазного источника электроэнергии, то нагревательные элементы соединяются группами по три штуки по схеме «звезда» или «треугольник» в зависимости от напряжения источника питания и напряжения, на которое рассчитаны ТЭНы («треугольник» – если ТЭНы рассчитаны на напряжение 380 В, «звезда» – если на 220 В). Для работы комплекса из трех установок необходим источник электроэнергии мощностью около 20 кВт/ч. Специалисты утверждают, что расход энергии на оттаивание 1 м 3 грунта в течение времени 6–10 ч (в зависимости от его вида, влажности и температуры) находится в пределах 100–300 МДж или 50 кВт.ч, при этом внутри тепляка поддерживается температура 50–60 °С.

Недостатки данного способа: эффективная теплоизоляция печей невозможна из-за опасности их перегрева и выхода из строя, по этой причине у данных нагревательных приборов низкий к.п.д.; к тому же площадь размораживаемого участка невелика, а для питания оборудования необходим мощный источник электроэнергии; кроме того, при перегреве электрических контактов нагревательных элементов возникает высокая вероятность поражения электрическим током посторонних лиц; поэтому на время работы установки требуется ограждение и охрана участка. Вследствие названных неудобств и опасности эксплуатации некоторые компании отказываются от использования данного метода прогрева.

Обустройство паровых и водяных батарей еще сложнее, требуется паровой или водяной котел и т. д.

Преимущества . Быстрая и несложная доставка на место и подготовка к работе оборудования. Относительно малый по времени период оттаивания – до 10 ч.

УПГО СПЕКТ предназначены для решения целого ряда задач: прогрев инертных материалов в зимний период, подогрев воды и отопление помещений.

Мы предлагаем установки парогазовые отопительные , которые производят прогрев инертных материалов на БСУ (песка, щебня, гравия, известняка):

Тип установки

Тепловая мощность,

Производительность РБУ

куб.м в смеси в час

Цена, руб.
УПГО СПЕКТ-400 400 10-30 от 1 100 000
УПГО СПЕКТ-800 800 30-60 от 1 800 000
УПГО СПЕКТ-1200 1200 60-90 от 2 400 000
УПГО СПЕКТ-1600 1600 90-120 от 2 900 000

Цифрами обозначена номинальная тепловая мощность установки в киловаттах.

Оборудование производится в соответствии с полученным нами патентом и сертификатом соответствия.

Чем греют инертные?

(Руководство по выбору).

Технология производства бетонных смесей зимой несколько отличается от технологии производства бетона летом.

При низких температурах окружающей среды от -5°С и ниже возникает несколько дополнительных проблем:

  1. Температура инертных материалов (песка, щебня) такова, что возникают условия для замерзания воды при затворении, и смесь не получается.
  2. В помещениях бетонного завода требуется отопление для комфортной работы персонала и агрегатов.
  3. Готовую бетонную смесь необходимо доставлять на строительную площадку с температурой не ниже 15°С. Миксеры, перевозящие бетон, также заправляются водой с температурой не ниже 40°С.

Первая проблема при слабых морозах частично решается использованием противоморозных добавок и разогретой водой. Вторая, применением электронагревателей. Третья проблема не решается без применения специальных средств.

Что требуется для производства бетона зимой?

  1. Подогрев инертных (песка и щебня) до температуры от 5°С до 20°С.
  2. Подогрев воды до температуры от 40°С до 70°С.
  3. Использование экономичной системы отопления помещений.

Какие источники энергии доступны для обогрева инертных и воды?

Не будем рассматривать экзотические источники энергии, как ветрогенераторы, солнечные батареи, термальные источники и т.д. Задачу сформулируем так:

Требуется работать при низких температурах;

Центральной системы теплоснабжения нет;

Использование электроэнергии слишком дорого.

Чем греть инертные?

Наиболее распространенными источниками энергии являются газ и дизельное топливо, они отлично работают совместно с системами автоматизации. Возможно применение мазута и печного топлива. Дрова и каменный уголь применяются реже из-за сложности автоматизации.

Какое оборудование для прогрева инертных материалов применяется?

Промышленность выпускает установки для нагрева песка, щебня, воды, работающие на различных физических принципах. Достоинства и недостатки установок приведены ниже:

1. Разогрев инертных материалов горячим воздухом.

Топливо: дизельное.

Достоинства:

Температура воздуха до 400 °С

Малые габариты;

Недостатки:

Низкий КПД (высокие энергозатраты при эксплуатации, так как воздух не эффективно отдает тепло материалам, большая часть тепла уходит в атмосферу);

Медленный прогрев инертных материалов (30-60 минут);

Низкое давление воздуха не продувает мелкие фракции и песок;

Нет нагрева технологической воды;

Не используется для отопления помещений.

2. Прогрев инертных материалов паром.

Топливо: дизельное.

Достоинства:

Высокий КПД;

Высокая эффективность прогрева инертных материалов;

Быстрый разогрев инертных материалов (10-20 минут);

Средняя стоимость;

Можно греть воду;

Малые габариты;

Электрическая мощность до 2 кВт.

Недостатки:

Создают высокую влажность инертных материалов (вследствие конденсации пара от 500 до 1000 кг в час;

Высокоэффективные паровые котлы с температурой выше 115 °С и давлением более 0.7 кг/см² являются поднадзорными;

Сложно применять для отопления помещений (отключается при простое бетонного завода).

3. Нагрев инертных материалов регистрами с горячей водой или паром.

Топливо: дизельное или центральное отопление.

Достоинства:

Высокий КПД;

Не сложное, дешевое оборудование;

Не требуется разрешения технадзора;

Можно греть воду;

Можно применять для отопления помещений;

Очень малые габариты;

Электрическая мощность до 0.5 кВт.

Недостатки:

Часто требует ремонта и обслуживания регистров;

Низкая эффективность прогрева инертных материалов;

Процесс нагрева занимает несколько часов.

4. Турбоматики (разогрев инертных паровоздушной смесью с теплообменниками).

Топливо: дизельное.

Достоинства:

Высокий КПД;

Не требуется разрешения технадзора;

Нет регистров;

Можно греть воду.

Недостатки:

Сложное, дорогостоящее оборудование;

Не применяется для отопления помещений;

Большие габариты;

Электрическая мощность до 18-36 кВт (циклически).

5. Установки парогазовоздушные.

Обогрев инертных материалов дымовыми газами.

Топливо: дизельное.

Достоинства:

Высокий КПД;

Высокая эффективность прогрева инертных материалов (10-20 минут);

Не сложное оборудование со средней стоимостью;

Не требуется разрешения технадзора;

Нет регистров;

Температура смеси до 400 °С.

Можно применять для отопления помещений (есть дежурный режим);

Есть нагрев воды для технологических нужд и заправки миксеров;

Малые габариты.

Недостатки:

Электрическая мощность до 18 кВт (циклически).

Для всех пяти типов установок в качестве топлива может применяться природный газ низкого или среднего давления при наличии в оборудовании газовых горелок. Требуются согласования с технадзорными органами, наличие проекта и экспертизы.

Значительная часть территории России расположена в зонах с продолжительной и суровой зимой. Однако строительство осуществляется круглогодично, в этой связи около 15% общего объема земляных работ приходится выполнять в зимних условиях и при мерзлом состоянии грунта. Особенность разработки грунта в мерзлом состоянии за ключается в том, что при замерзании грунта механическая прочность его возрастает, а разработка затрудняется. Зимой значительно возрастает трудоемкость разработки грунта (ручных работ в 4...7 раз, механизированных в 3...5 раз), ограничивается применение некоторых механизмов - экскаваторов, бульдозеров, скреперов, грейдеров, в то же время выемки зимой можно выполнять без откосов. Вода, с которой много неприятностей в теплое время года, в замерзшем состоянии становится союзником строителей. Иногда отпадает необходимость в шпунтовых ограждениях, практически всегда в водоотливе. В зависимости от конкретных местных условий используют следующие методы разработки грунта:

■ предохранение грунта от промерзания с последующей разработкой обычными методами;

■ оттаивание грунта с разработкой его в талом состоянии;

■ разработка грунта в мерзлом состоянии с предварительным рыхлением;

■ непосредственная разработка мерзлого грунта.

5.11.1. Предохранение грунта от промерзания

Этот метод основан на искусственном создании на поверхности участка, намеченного к разработке в зимнее время, термоизоляционного покрова с разработкой грунта в талом состоянии. Предохранение проводится до наступления устойчивых отрицательных температур, с заблаговременным отводом с утепляемого участка поверхностных вод. Применяют следующие способы устройства термоизоляционного покрытия: предварительное рыхление грунта, вспахивание и боронование грунта, перекрестное рыхление, укрытие поверхности грунта утеплителями и др.

Предварительное рыхление грунта, а также вспахивание и боронование осуществляется накануне наступления зимнего периода на участке, предназначенном для разработки в зимних условиях. При рыхлении поверхности грунта верхний слой приобретает рыхлую структуру с заполненными воздухом замкнутыми пустотами, обладающими достаточными теплоизоляционными свойствами. Вспашку производят тракторными плугами или рыхлителями на глубину 30...35 см с последующим боронованием на глубину 15...20 см. Такая обработка в сочетании с естественно образующимся снеговым покровом отдаляют начало промерзания грунта на 1,5 мес, а на последующий период уменьшают общую глубину промерзания примерно на 73. Снеговой покров может быть увеличен перемещением снега на участок бульдозерами или автогрейдерами или установкой перпендикулярно направлению господствующих ветров нескольких рядов снегозащитных заборов из решетчатых щитов размером 2 X 2 м на расстоянии 20...30 м ряд от ряда.

Глубинное рыхление производят экскаваторами на глубину 1,3. ..1,5 м путем перекидки разрабатываемого грунта на участке, где в последующем будет располагаться земляное сооружение.

Перекрестное рыхление поверхности на глубину 30...40 см, второй слой которого располагается под углом 60...900, а каждая последующая проходка выполняется с нахлесткой на 20 см. Такая обработка, включая снежный покров, отодвигает начало замерзания грунта на 2.5.. .3.5 мес., резко снижается общая глубина промерзания.

Предварительная обработка поверхности грунта механическим рыхлением особенно эффективна при утеплении этих участков земли.

Укрытие поверхности грунта утеплителями. Для этого используют дешевые местные материалы - древесные листья, сухой мох, торфяная мелочь, соломенные маты, стружки, опилки, снег. Наиболее простой способ - укладка этих утеплителей толщиной слоя 20...40 см непосредственно по грунту. Такое поверхностное утепление применяют в основном для небольших по площади выемок.

Укрытие с воздушной прослойкой. Более эффективным является использование местных материалов в сочетании с воздушной прослойкой. Для этого на поверхности грунта раскладывают лежни толщиной 8.. .10 см, на них горбыли или другой подручный материал - ветки, прутья, камыши; по ним сверху насыпают слой опилок или древесных стружек толщиной 15...20 см с предохранением их от сдувания ветром. Такое укрытие чрезвычайно эффективно в условиях срединной России, оно фактически предохраняет грунт от промерзания в течение всей зимы. Целесообразно площадь укрытия (утепления) увеличивать с каждой стороны на 2...3 м, что предохранит грунт от промерзания не только сверху, но и сбоку.

С началом разработки грунта вести его надо быстрыми темпами, сразу на всю необходимую глубину и небольшими участками. Утепляющий слой при этом нужно снимать только на разрабатываемой площади, в противном случае при сильных морозах будет быстро образовываться мерзлая корка грунта, затрудняющая производство работ.

5.11.2. Метод оттаивания грунта с разработкой его в талом состоянии

Оттаивание происходит за счет теплового воздействия и характеризуется значительной трудоемкостью и энергетическими затратами. Применяется в редких случаях, когда другие методы недопустимы или неприемлемы - вблизи действующих коммуникаций и кабелей, в стесненных условиях, при аварийных и ремонтных работах.

Способы оттаивания классифицируются по направлению распространения теплоты в грунте и по применяемому теплоносителю (сжигание топлива, пар, горячая вода, электричество). По направлению оттаивания все способы делятся на три группы.

Оттаивание грунта сверху вниз. Теплота распространяется в вертикальном направлении от дневной поверхности вглубь грунта. Способ наиболее прост, практически не требует подготовительных работ, наиболее часто применим на практике, хотя с точки зрения экономного расхода энергии наиболее несовершенен, так как источник теплоты размещается в зоне холодного воздуха, поэтому неизбежны значительные потери энергии в окружающее пространство.

Оттаивание грунта снизу вверх. Теплота распространяется от нижней границы мерзлого грунта к дневной поверхности. Способ наиболее экономичный, так как опаивание происходит под защитой мерзлой корки грунта и теплопотери в пространство практически исключены. Потребная тепловая энергия может быть частично сэкономлена за счет оставления верхней корки грунта в промерзшем состоянии. Она имеет наиболее низкую температуру, поэтому требует больших затрат энергии на опаивание. Но этот тонкий слой грунта в 10...15 см будет беспрепятственно разработан экскаватором, для этого вполне хватит мощности машины. Главный недостаток этого способа в необходимости выполнения трудоемких подготовительных операций, что ограничивает область его применения.

Радиальное оттаивание грунта занимает промежуточное положение между двумя предыдущими способами по расходу тепловой энергии. Теплота распространяется в грунте радиально от вертикально установленных прогревных элементов, но для того, чтобы их установить и подключить к работе требуются значительные подготовительные работы.

Для выполнения оттаивания грунта по любому из этих трех способов необходимо участок предварительно очистить от снега, чтобы не тратить тепловую энергию на его оттаивание и недопустимо переувлажнять грунт.

В зависимости от применяемого теплоносителя существует несколько методов оттаивания.

Оттаивание непосредственным сжиганием топлива. Если в зимнее время необходимо выкопать 1...2 ямы, самое простое решение - обойтись простым костром. Поддерживание костра в течение смены приведет к оттаиванию грунта под ним на 30...40 см. Погасив костер и хорошо утеплив место прогрева опилками, оттаивание грунта внутрь будет продолжаться за счет аккумулированной энергии и за смену может достигнуть общей глубины до 1 м. При необходимости можно снова расжечь костер или разработать талый грунт и на дне ямы развести костер. Применяют способ крайне редко, так как только незначительная часть тепловой энергии расходуется продуктивно.

Огневой способ применим для отрывки небольших траншей, используется звеньевая конструкция (рис. 5.41) из ряда металлических коробов усеченного типа, из которых легко собирается галерея необходимой длины, в первом из них устраивают камеру сгорания твердого или жидкого топлива (костер из дров, жидкое и газообразное топливо с сжиганием через форсунку). Тепловая энергия перемещается к вытяжной трубе последнего короба, создающей необходимую тягу, благодаря которой горячие газы проходят вдоль всей галереи и грунт под коробами прогревается по всей длине. Сверху короба желательно утеплить, часто утеплителем используют талый грунт. После смены агрегат убирают, полосу оттаявшего грунта засыпают опилками, дальнейшее опаивание продолжается за счет аккумулированного в грунте тепла.

Электропрогрев. Сущность данного метода состоит в пропускании электрического тока через грунт, в результате чего он приобретает положительную температуру. Используют горизонтальные и вертикальные электроды в виде стержней или полосовой стали. Для первоначального движения электрического тока между стержнями необходимо создать токопроводящую среду. Такой средой может быть талый грунт, если электроды забить в грунт до талого грунта, или на поверхности грунта, очищенного от снега, насыпать слой опилок толщиной 15...20 см, смоченных солевым раствором с концентрацией 0,2-0,5%. Вначале смоченные опилки являются токопроводящим элементом. Под воздействием теплоты, генерируемой в слое опилок, верхний слой грунта нагревается, опаивает и сам становится проводником тока от одного электрода к другому. Под воздействием теплоты происходит оттаивание нижележащих слоев грунта. В последующем распространение тепловой энергии осуществляется в основном в толще грунта, опилочный слой только защищает обогреваемый участок от потерь теплоты в атмосферу, для чего слой опилок целесообразно накрыть рулонными материалами или щитами. Этот способ достаточно эффективен при глубине промерзания или оттаивания грунта до 0,7 м. Расход электроэнергии на отогрев 1 м3 грунта колеблется в пределах 150...300 кВт.ч, температура нагретых опилок не превышает 80...90 °С.

Рис. 5.41. Установка для оттаивания грунта жидким топливом:

а - общий вид; б - схема утепления короба; 1 - форсунка; 2 - утеплитель (обсыпка талым грунтом); 3 - короба; 4 - вытяжная труба; 5 - полость оттаявшего грунта

Оттаивание грунта полосовыми электродами, укладываемыми на поверхность грунта, очищенной от снега и мусора, по возможности выровненной. Концы полосового железа отгибают кверху на 15...20 см для подключения к электропроводам. Поверхность отогреваемого участка покрывают слоем опилок толщиной 15...20 см, смоченных раствором хлористого натрия или кальция консистенции 0,2...0,5%. Так как грунт в промороженном состоянии не является проводником, то на первой стадии ток движется по смоченным раствором опилкам. Далее отогревается верхний слой грунта и оттаявшая вода начинает проводить электрический ток, процесс со временем идет вглубь грунта, опилки начинают выполнять роль теплозащиты отогреваемого участка от теплопотерь в атмосферу. Опилки сверху обычно покрывают толем, пергамином, щитами, другими защитными материалами. Способ применим при глубине отогрева до 0,6...0,7 м, так как при больших глубинах напряжение падает, грунты менее интенсивно включаются в работу, значительно медленнее нагреваются. К тому же они достаточно пропитаны с осени водой, которая требует больше энергии для перехода в талое состояние. Расход энергии колеблется в пределах 50-85 кВт.ч на 1 м3 грунта.

Оттаивание грунта стержневыми электродами (рис. 5.42). Данный метод осуществляют сверху вниз, снизу вверх и комбинированным способами. При оттаивании грунта вертикальными электродами стержни из арматурного железа с заостренным нижним концом забиваются в грунт в шахматном порядке, обычно используя рамку 4x4 м с крестообразно натянутыми проволоками; расстояние между электродами оказывается в пределах 0,5-0,8 м.

Рис. 5.42. Оттаивание грунта глубинными электродами:

а - снизу вверх; б - сверху вниз; 1 - талый грунт; 2 - мерзлый грунт; 3 - электрический провод; 4 - электрод, 5 - слой гидроизоляционного материала; 6 - слой опилок; I-IV - слои оттаивания

При прогреве сверху вниз предварительно очищают от снега и наледи поверхность, стержни забивают в грунт на 20...25 см, укладывают слой опилок, пропитанных раствором солей. По мере прогрева грунта электроды забивают глубже в грунт. Оптимальной будет глубина прогрева в пределах 0,7... 1,5 м. Продолжительность оттаивания грунта воздействием электрического тока примерно 1,5...2,0 сут, после этого увеличение глубины оттаивания будет происходить за счет аккумулированной теплоты еще в течение 1...2 сут. Расстояние между электродами 40...80 см, расход энергии по сравнению с полосовыми электродами сокращается на 15...20% и составляет 40...75 кВт-ч на 1 м3 грунта.

При прогреве снизу вверх пробуривают скважины и вставляют электроды на глубину, превышающую глубину промерзшего грунта на 15...20 см. Ток между электродами идет по талому грунту ниже уровня промерзания, при нагреве грунт отогревает вышележащие слои, которые также включаются в работу. При этом методе применять слой опилок не требуется. Расход энергии составляет 15...40 кВт/ч на 1 м3 грунта.

Третий, комбинированный способ, будет иметь место при заглублении электродов в подстилающий талый грунт и устройстве на дневной поверхности опилочной засыпки, пропитанной солевым раствором. Электрическая цепь замкнется наверху и внизу, оттаивание грунта будет происходить сверху вниз и снизу вверх одновременно. Так как трудоемкость подготовительных работ при этом способе самая высокая, то его применение может быть оправдано лишь в исключительных случаях, когда требуется ускоренное оттаивание грунта.

Оттаивание токами высокой частоты. Этот метод позволяет резко сократить подготовительные работы, так как промерзший грунт сохраняет проводимость к токам высокой частоты, поэтому отпадает надобность в большом заглублении электродов в грунт и в устройстве опилочной засыпки. Расстояние между электродами может быть увеличено до 1,2 м, т. е. сокращено их количество почти в два раза. Процесс оттаивания грунта протекает относительно быстро. Ограниченное использование способа связано с недостаточным выпуском генераторов токов высокой частоты.

Одним из методов, которые в настоящее время утратили свою эффективность и вытеснены более современными, является оттаивание грунта паровыми или водяными иглами. Дня этого необходимо наличие источников горячей воды и пара, при малой, до 0,8 м глубине промерзания грунта. Паровые иглы представляют собой металлическую трубу длиной до 2 м и диаметром 25...50 мм. На нижнюю часть трубы насажен наконечник с отверстиями диаметром 2...3 мм. Иглы соединяют с паропроводом гибкими резиновыми шлангами при наличии на них кранов. Иглы заглубляют в скважины, предварительно пробуриваемые на глубину, приблизительно равную 70% глубины оттаивания. Скважины закрывают защитными колпаками, снабженные сальниками для пропуска паровой иглы. Пар подают под давлением 0,06...0,07 МПа. После установки аккумулированных колпаков прогреваемую поверхность покрывают слоем термоизоляционного материала, чаще всего опилок. Иглы располагают в шахматном порядке с расстоянием между центрами 1 1,5 м.

Расход пара на 1 м3 грунта составляет 50... 100 кг. За счет выделения паром в грунте скрытой теплоты парообразования прогрев грунта проходит особенно интенсивно. Этот метод требует расхода тепловой энергии примерно в 2 раза больше, чем метод вертикальных электродов.

Оттаивание грунта теплоэлектронагревателями. Данный метод основан на передаче теплоты мерзлому грунту контактным способом. В качестве основных технических средств применяются электро-маты, изготавливаемые из специального теплопроводящего материала, через который пропускают электрический ток. Прямоугольные маты, размеры которых могут закрывать поверхность от 4...8 м2, укладываются на оттаиваемый участок и подсоединяются к источнику электричества напряжением 220 В. При этом образующееся тепло эффективно распространяется сверху вниз в толщу мерзлого грунта, что приводит к его оттаиванию. Время, необходимое для оттаивания, зависит от температуры окружающего воздуха и от глубины промерзания грунта и в среднем составляет 15-20 ч.

5.11.3. Разработка грунта в мерзлом состоянии с предварительным рыхлением

Рыхление мерзлого грунта с последующей разработкой землеройными и землеройно-транспортными машинами осуществляют механическим или взрывным методом.

Механическое рыхление мерзлого грунта с использованием современных строительных машин повышенной мощности приобретает все большее распространение. В соответствии с требованиями экологии, перед зимней разработкой грунта необходимо в осенний период снять бульдозером слой растительного грунта с намеченного для разработки участка. Механическое рыхление базируется на резании, раскалывании или сколе мерзлого грунта статическим (рис. 5.43) или динамическим воздействием.

Рис. 5.43. Рыхление мерзлого грунта статическим воздействием:

а - бульдозером с активными зубьями, б - экскаватором-рыхлителем, 1 - направление хода рыхления

При динамическом воздействии на грунт осуществляется его раскалывание или сколы молотами свободного падения и направленного действия (рис. 5.44). Этим способом разрыхление грунта производят молотами свободного падения (шар- и клин-молотами), подвешенными на канатах на стрелы экскаваторов, либо молотами направленного действия, когда рыхление осуществляется сколом грунта. Рыхление механическим способом позволяет осуществлять его разработку землеройными и землеройно-транспортными машинами. Молоты массой до 5 т сбрасывают с высоты 5...8 м: молот в форме шара рекомендуется применять при рыхлении песчаных и супесчаных грунтов, клин-молоты - для глинистых (при глубине промерзания 0,5...0,7 м). В качестве молота направленного действия широко применяют дизель-молоты на экскаваторах или тракторах; они позволяют разрушать промороженный грунт на глубину До 1,3 м (рис. 5.45).

Статическое воздействие основано на непрерывном режущем Усилии в мерзлом грунте специального рабочего органа - зуба-рыхлителя, который может быть рабочим оборудованием гидравлического экскаватора «обратная лопата» или быть навесным оборудованием на Мощных тракторах.

Рыхление статическими рыхлителями на базе трактора подразумевает в качестве навесного оборудования специального ножа (зуба), режущее усилие которого создается за счет тягового усилия трактора.

Машины этого типа рассчитаны на послойное рыхление грунта на глубину 0,3...0,4 м. Число зубьев зависит от мощности трактора, при минимальной мощности трактора 250 л.с. используется один зуб. Разрыхление грунта осуществляют параллельными послойными проходками через 0,5 м с последующими поперечными проходками под углом 60...900 к предыдущим. Перемещение разрыхленного грунта в отвал осуществляют бульдозерами. Целесообразно навесное оборудование крепить непосредственно на бульдозер и использовать его для самостоятельного перемещения разрыхленного грунта (см. рис. 5.21). Производительность рыхлителя 15...20 м3/ч.

Способность статических рыхлителей послойно разрабатывать мерзлый грунт дает возможность использовать их независимо от глубины промерзания грунта. Современные рыхлители на базе тракторов с бульдозерным оборудованием благодаря своим широким технологическим возможностям находят широкое применение в строительстве. Это обусловлено их высокой экономичностью. Так, стоимость разработки грунта с применением рыхлителей по сравнению с взрывным способом рыхления в 2...3 раза ниже. Глубина рыхления этими машинами составляет 700...1400 мм.

Рис.5.45. Схема совместной работы дизель-молота и экскаватора «прямая лопата»

Рыхление мерзлых грунтов взрывом эффективно при значительных объемах разработки мерзлого грунта. Метод применяют преимущественно на незастроенных участках, и ограниченно застроенных - с использованием укрытий и локализаторов взрыва (тяжелых пригрузочных плит).

В зависимости от глубины промерзания грунта взрывные работы выполняют (рис. 5.46):

■ методом шпуровых и щелевых зарядов при глубине промерзания грунта до 2 м;

■ методом скважинных и щелевых зарядов при глубине промерзания свыше 2 м.

Шпуры просверливают диаметром 22...50 мм, скважины - 900...1100 мм, расстояние между рядами принимается от 1 до 1,5 м. Щели на расстоянии 0,9... 1,2 м одна от другой нарезают щеленарез-Выми мяптнями фрезерного типа или баровыми машинами. Из трех Соседних щелей взрывчатое вещество помещается только в среднюю, крайние и промежуточные щели служат для компенсации сдвига мерзлого грунта во время взрыва и для снижения сейсмического эффекта. Заряжают щели удлиненными или сосредоточенными зарядами, после чего их сверху засыпают талым песком. При качественном выполнении подготовительных работ в процессе взрывания мерзлый грунт полностью дробится, не повреждая стенок котлована или траншеи.

Рис. 5.46. Методы рыхления мерзлого грунта взрывом:

а - шпуровыми зарядами; б - то же, скважинными; в - то же, котловыми; г - то же, малокамерными; д, е - то же, камерными; ж - то же, щелевыми; 1 - заряд ВВ; 2 - забойка; 3 - грудь забоя; 4 - рукав; 5 - шурф; б - штольня; 7 - рабочая щель; 8 - компенсационная щель

Разрыхленный взрывами грунт разрабатывается экскаваторами или землеройно-транспортными машинами.

5.11.4. Непосредственная разработка мерзлого грунта

Разработка (без предварительного рыхления) может осуществляется двумя методами - блочным и механическим.

Блочный метод разработки применим для больших площадей и основан на том, что монолитность мерзлого грунта нарушается за счет разрезки его на блоки. С помощью навесного оборудования на тракторе - баровой машины грунт разрезают при взаимно-перпендикулярных проходках на блоки шириной 0,6...1,0 м (рис. 5.47). При малой глубине промерзания (до 0,6 м) достаточно сделать только продольные разрезы.

Баровые машины, осуществляющие нарезку щелей, имеют одну, две или три врубовые цепи, навешенные на тракторы или траншейные экскаваторы. Баровые машины позволяют прорезать в мерзлом грунте щели глубиной 1,2...2,5 м. Используют стальные зубья с режущей кромкой из прочного сплава, что продлевает срок их службы, а при износе или истирании позволяет быстро их заменить. Расстояние между барами принимается в зависимости от грунта через 60... 100 см. Разработку производят экскаваторами «обратная лопата» с ковшом большой вместимости или глыбы грунта волоком перемещают с разрабатываемой площадки в отвал бульдозерами или гранторами.

Рис.5.47. Схема блочной разработки грунта:

а - нарезка щелей баровой машиной; б - то же, с извлечением блоков трактором; в - разработка котлована с извлечением блоков мерзлого грунта при помощи крана; I - слой мерзлого грунта; 2 - режущие цепи (бары); 3 - экскаватор; 4 - щели в мерзлом грунте; 5 - нарезанные блоки грунта; 6 - перемещаемые с площадки блоки; 7 - столики крана; 8 - транспортное средство; 9 - клещевой захват; 10 - строительный кран; 11 - трактор

Механический метод основан на силовом, а чаще в сочетании с ударным или вибрационном воздействии на массив мерзлого грунта. Реализуется метод применением обычных землеройных и землеройно-транспортных машин и машин со специально разработанными для зимних условий рабочими органами (рис. 5.48).

Обычные серийные машины применяют в начальный период зимы, Когда глубина промерзания грунта незначительна. Прямая и обратная лопата могут разрабатывать грунт при глубине промерзания 0,25...0,3 м; с ковшом вместимостью более 0,65 м3-0,4 м; экскаватор драглайн - до 0,15 м; бульдозеры и скреперы в состоянии разрабатывать промерзший грунт на глубину до 15 см.

Рис. 5.48. Механический способ непосредственной разработки грунта:

а - ковш экскаватора с активными зубьями; б - разработка грунта экскаватором «обратная лопа-та» и захватно-клещевым устройством; в - землеройно-фрезерная машина; 1 - ковш; 2 - зуб ков-ша; 3 - ударник; 4 - вибратор; 5 - захватно-клещевое устройство; б - отвал бульдозера; 7 - гидроцилиндр для подъема и опускания рабочего органа; 8 - рабочий орган (фреза)

Для зимних условий разработано специальное оборудование для одноковшовых экскаваторов - ковши с виброударными активными зубьями и ковши с захватно-клещевым устройством. Затраты энергии на резание грунта примерно в 10 раз больше, чем на скалывание. Вмонтирование в режущий край ковша экскаватора виброударных механизмов, аналогичных по работе отбойному молотку, приносят хорошие результаты. За счет избыточного режущего усилия такие одноковшовые экскаваторы могут послойно разрабатывать массив мерзлого грунта. Процесс рыхления и экскавации грунта оказывается единым.

Разработку грунта осуществляют и многоковшовыми экскаваторами, специально разработанными для проходки траншей в мерзлом грунте. Для этой цели служит специальный режущий инструмент в виде клыков, зубьев или коронок со вставками из твердого металла, укрепляемых на ковшах. На рис. 5.48, а показан рабочий орган многоковшового экскаватора с активными зубьями для разработки скальных и мерзлых грунтов.

Послойную разработку грунта можно осуществлять специализированной землеройно-фрезерной машиной, снимающей стружку глубиной до 0,3 м и шириной 2,6 м. Перемещение разработанного мерзлого грунта производят бульдозерным оборудованием, входящим в комплект машины.