Какие соединения имеют ионную кристаллическую решетку. Большая энциклопедия нефти и газа

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества. По типу связи различают вещества молекулярного и немолекулярного строения.

Это вещества, состоящие из молекул. Связи между молекулами в таких веществах очень слабые, намного слабее, чем между атомами внутри молекулы, и уже при сравнительно низких температурах они разрываются - вещество превращается в жидкость и далее в газ (возгонка йода). Температуры плавления и кипения веществ, состоящих из молекул, повышаются с увеличением молекулярной массы. К молекулярным веществам относятся вещества с атомной структурой (С, Si, Li, Na, К, Си, Fe, W), среди них есть металлы и неметаллы.

Немолекулярное строение веществ

К веществам немолекулярного строения относятся ионные соединения. Таким строением обладает большинство соединений металлов с неметаллами: все соли (NaCl, K 2 S0 4), некоторые гидриды (LiH) и оксиды (CaO, MgO, FeO), основания (NaOH, КОН). Ионные (немолекулярные) вещества имеют высокие температуры плавления и кипения.

Твердые вещества: кристаллические и аморфные

Аморфные вещества не имеют четкой температуры плавления - при нагревании они постепенно размягчаются и переходят в текучее состояние. В аморфном состоянии, например, находятся пластилин и различные смолы.

Кристаллические вещества характеризуются правильным расположением тех частиц, из которых они состоят: атомов, молекул и ионов - в строго определенных точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решеткой . Точки, в которых размещены частицы кристалла, называют узлами решетки .

В зависимости от типа частиц, расположенных в узлах кристаллической решетки, и характера связи между ними, различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические .

Ионные кристаллические решетки

Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы Na + , Сl — , так и сложные S0 4 2- , ОН — . Следовательно, ионными кристаллическими решетками обладают соли, некоторые оксиды и гидроксиды металлов. Например, кристалл хлорида натрия построен из чередующихся положительных ионов Na + и отрицательных Сl — , образующих решетку в форме куба.

Ионная кристаллическая решетка поваренной соли

Связи между ионами в таком кристалле очень устойчивы. Поэтому вещества с ионной решеткой отличаются сравнительно высокой твердостью и прочностью, они тугоплавки и нелетучи.

Атомные кристаллические решетки

Атомными называют кристаллические решетки, в узлах которых находятся отдельные атомы. В таких решетках атомы соединены между собой очень прочными ковалентными связями. Примером веществ с таким типом кристаллических решеток может служить алмаз - одно из аллотропных видоизменений углерода.

Атомная кристаллическая решетка алмаза

Большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (например, у алмаза она свыше 3500 °С), они прочны и тверды, практически нерастворимы.

Молекулярные кристаллические решетки

Молекулярными называют кристаллические решетки, в узлах которых располагаются молекулы.

Молекулярная кристаллическая решетка йода

Химические связи в этих молекулах могут быть и полярными (НСl, Н 2 O), и неполярными (N 2 , О 2). Несмотря на то, что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому вещества с молекулярными кристаллическими решетками имеют малую твердость, низкие температуры плавления, летучи. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар).

Металлические кристаллические решетки

Вещества с металлической связью имеют металлические кристаллические решетки.

В узлах таких решеток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны «в общее пользование»). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, характерный металлический блеск.


Твердые вещества существуют в кристаллическом и аморфном состоянии и преимущественно имеют кристаллическое строение. Оно отличается правильным местоположением частиц в точно определенных точках, характеризуется периодической повторяемостью в объемном, Если мысленно соединить эти точки прямыми - получим пространственный каркас, который и называют кристаллической решеткой. Понятие «кристаллическая решетка» относится к геометрическому образу, который описывает трехмерную периодичность в размещении молекул (атомов, ионов) в кристаллическом пространстве.

Точки расположения частиц называются узлами решетки. Внутри каркаса действуют межузловые связи. Вид частиц и характер связи между ними: молекулы, атомы, ионы - определяют Всего выделяют четыре таких типа: ионные, атомные, молекулярные и металлические.

Если в узлах решетки расположены ионы (частицы с отрицательным или положительным зарядом), то это ионная кристаллическая решетка, характеризующаяся одноименными связями.

Эти связи весьма прочны и стабильны. Поэтому вещества с таким типом строения обладают достаточно высокой твердостью и плотностью, нелетучи и тугоплавки. При низких температурах они проявляют себя как диэлектрики. Однако при плавлении таких соединений нарушается геометрически правильная ионная кристаллическая решетка (расположение ионов) и уменьшаются прочностные связи.

При температуре, близкой к температуре плавления, кристаллы с ионной связью уже способны проводить электрический ток. Такие соединения легко растворимы в воде и других жидкостях, которые состоят из полярных молекул.

Ионная кристаллическая решетка свойственна всем веществам с ионным типом связи - соли, гидроксиды металлов, бинарные соединения металлов с неметаллами. не имеет направленности в пространстве, потому что каждый ион связан сразу с несколькими противоионами, сила взаимодействия которых зависит от расстояния между ними (закон Кулона). Ионно-связанные соединения имеют немолекулярное строение, они представляют собой твердые вещества с ионными решетками, высокой полярностью, высокими температурами плавления и кипения, в водных растворах являющиеся электропроводными. Соединений с ионными связями в чистом виде практически не встречается.

Ионная кристаллическая решетка присуща некоторым гидроксидам и оксидам типичных металлов, солям, т.е. веществам с ионной

Кроме ионной связи в кристаллах бывает металлическая, молекулярная и ковалентная связь.

Кристаллы, имеющие ковалентную связь, являются полупроводниками или диэлектриками. Типовыми примерами атомных кристаллов служат алмаз, кремний и германий.

Алмаз — это минерал, аллотропная кубическая модификация (форма) углерода. Кристаллическая решетка алмаза - атомная, весьма сложная. В узлах такой решетки находятся атомы, соединенные между собой крайне прочными ковалентными связями. Алмаз состоит из отдельных атомов углерода, расположенных по одному в центре тетраэдра, вершинами которого являются четыре ближайших атома. Такая решетка характеризуется гранецентрированной кубической что обусловливает максимальную твердость алмаза и довольно высокую температуру плавления. В решетке алмаза отсутствуют молекулы - и кристалл можно рассматривать как одну внушительную молекулу.

Помимо этого, свойственна кремнию, твердому бору, германию и соединениям отдельных элементов с кремнием и углеродом (кремнезем, кварц, слюда, речной песок, карборунд). Вообще же представителей с атомной решеткой относительно немного.

Для большинства веществ характерна способность в зависимости от условий находиться в одном из трех агрегатных состояний: твердом, жидком или газообразном.

Например, вода при нормальном давлении в интервале температур 0-100 o C является жидкостью, при температуре выше 100 о С способна существовать только в газообразном состоянии, а при температуре менее 0 о С представляет собой твердое вещество.
Вещества в твердом состоянии различают аморфные и кристаллические.

Характерными признаками аморфных веществ является отсутствие четкой температуры плавления: их текучесть плавно увеличивается с ростом температуры. К аморфным веществам относятся такие соединения, как воск, парафин, большинство пластмасс, стекло и т.д.

Все же кристаллические вещества обладают конкретной температурой плавления, т.е. вещество с кристаллическим строением переходит из твердого состоянии в жидкое не постепенно, а резко, при достижении конкретной температуры. В качестве примера кристаллических веществ можно привести поваренную соль, сахар, лед.

Разница в физических свойствах аморфных и кристаллических твердых веществ обусловлена прежде всего особенностями строения таких веществ. В чем заключается разница между веществом в аморфном и кристаллическом состоянии, проще всего понять из следующей иллюстрации:

Как можно заметить, в аморфном веществе, в отличие от кристаллического, отсутствует какой-либо порядок в расположении частиц. Если же в кристаллическом веществе мысленно соединить прямой два близкорасположенных друг к другу атома, то можно обнаружить, что на этой линии на строго определенных промежутках будут лежать одни и те же частицы:

Таким образом, в случае кристаллических веществах можно говорить о таком понятии, как кристаллическая решетка.

Кристаллической решеткой называют пространственный каркас, соединяющий точки пространства, в которых находятся частицы, образующие кристалл.

Точки пространства, в которых находятся образующие кристалл частицы, называют узлами кристаллической решетки .

В зависимости от того, какие частицы находятся в узлах кристаллической решетки, различают: молекулярную, атомную, ионную и металлическую кристаллические решетки .

В узлах молекулярной кристаллической решетки
Кристаллическая решетка льда как пример молекулярной решетки

находятся молекулы, внутри которых атомы связаны прочными ковалентными связями, однако сами молекулы удерживаются друг возле друга слабыми межмолекулярными силами. Вследствие таких слабых межмолекулярных взаимодействий кристаллы с молекулярной решеткой являются непрочными. Такие вещества от веществ с иными типами строения отличаются существенно более низкими температурами плавления и кипения, не проводят электрический ток, могут как растворяться, так и не растворяться в различных растворителях. Растворы таких соединений могут как проводить, так и не проводить электрический ток в зависимости от класса соединения. К соединениям с молекулярной кристаллической решеткой относятся многие простые вещества — неметаллы (отвержденные H 2 , O 2 , Cl 2 , ромбическая сера S 8 , белый фосфор P 4), а также многие сложные вещества – водородные соединения неметаллов, кислоты, оксиды неметаллов, большинство органических веществ. Следует отметить, что, если вещество находится в газообразном или жидком состоянии, говорить о молекулярной кристаллической решетке неуместно: корректнее использовать термин — молекулярный тип строения.

Кристаллическая решетка алмаза как пример атомной решетки
В узлах атомной кристаллической решетки

находятся атомы. При этом все узлы такой кристаллической решетки «сшиты» между собой посредством прочных ковалентных связей в единый кристалл. Фактически, такой кристалл является одной гигантской молекулой. Вследствие особенностей строения все вещества с атомной кристаллической решеткой являются твердыми, обладают высокими температурами плавления, химически мало активны, не растворимы ни в воде, ни в органических растворителях, а их расплавы не проводят электрический ток. Следует запомнить, что к веществам с атомным типом строения из простых веществ относятся бор B, углерод C (алмаз и графит), кремний Si, из сложных веществ — диоксид кремния SiO 2 (кварц), карбид кремния SiC, нитрид бора BN.

У веществ с ионной кристаллической решеткой

в узлах решетки находятся ионы, связанные друг с другом посредством ионных связей.
Поскольку ионные связи достаточно прочны, вещества с ионной решеткой обладают сравнительно высокой твердостью и тугоплавкостью. Чаще всего они растворимы в воде, а их растворы, как и расплавы проводят электрический ток.
К веществам с ионным типом кристаллической решетки относятся соли металлов и аммония (NH 4 +), основания, оксиды металлов. Верным признаком ионного строения вещества является наличие в его составе одновременно атомов типичного металла и неметалла.

Кристаллическая решетка хлорида натрия как пример ионной решетки

наблюдается в кристаллах свободных металлов, например, натрия Na, железа Fe, магния Mg и т.д. В случае металлической кристаллической решетки, в ее узлах находятся катионы и атомы металлов, между которыми движутся электроны. При этом движущиеся электроны периодически присоединяются к катионам, таким образом нейтрализуя их заряд, а отдельные нейтральные атомы металлов взамен «отпускают» часть своих электронов, превращаясь, в свою очередь, в катионы. Фактически, «свободные» электроны принадлежат не отдельным атомам, а всему кристаллу.

Такие особенности строения приводят к тому, что металлы хорошо проводят тепло и электрический ток, часто обладают высокой пластичностью (ковкостью).
Разброс значений температур плавления металлов очень велик. Так, например, температура плавления ртути составляет примерно минус 39 о С (жидкая в обычных условиях), а вольфрама — 3422 °C. Следует отметить, что в обычных условиях все металлы, кроме ртути, являются твердыми веществами.

Большинство твердых веществ имеет кристаллическое строение. Кристаллическая решетка построена из повторяющихся одинаковых структурных единиц, индивидуальных для каждого кристалла. Эта структурная единица носит название “элементарная ячейка”. Другими словами, кристаллическая решетка служит отображением пространственной структуры твердого вещества.

Классифицировать кристаллические решетки можно различным образом.

I. По симметрии кристаллов решетки классифицируются на кубические, тетрагональные, ромбические, гексагональные.

Эта классификация удобна при оценке оптических свойств кристаллов, а также их каталитической активности.

II. По природе частиц , находящихся в узлах решетки и по типу химической связи между ними различают атомные, молекулярные, ионные и металлические кристаллические решетки . Тип связи в кристалле определяет различие в твердости, растворимости в воде, величине теплоты растворения и теплоты плавления, электрической проводимости.

Важной характеристикой кристалла является энергия кристаллической решетки, кДж/мольэнергия, которую необходимо затратить на разрушение данного кристалла.

Молекулярная решетка

Молекулярные кристаллы состоят из молекул, удерживаемых в определенных положениях кристаллической решетки слабыми межмолекулярными связями (вандерваальсовыми силами) или водородными связями. Эти решетки характерны для веществ с ковалентными связями.

Веществ с молекулярной решеткой очень много. Это большое число органических соединений (сахар, нафталин и др.), кристаллическая вода (лед), твердый углекислый газ (“сухой лед”), твердые галогеноводороды, иод, твердые газы, в том числе и благородные,

Минимальна энергия кристаллической решетки у веществ с неполярными и малополярными молекулами (СН 4 , СО 2 и т.п.).

Решетки, образованные более полярными молекулами, имеют и более высокую энергию кристаллической решетки. Наибольшей энергией обладают решетки с веществами, образующими водородные связи (Н 2 О, NН 3).

Из-за слабого взаимодействия между молекулами эти вещества летучи, легкоплавки, имеют небольшую твердость, не проводят электрический ток (диэлектрики) и обладают низкой теплопроводностью.

Атомная решетка

В узлах атомной кристаллической решетки находятся атомы одного или различных элементов, связанных между собой ковалентными связями по всем трем осям. Такие кристаллы , которые называют также ковалентными , сравнительно немногочисленны.

Примерами кристаллов этого типа могут служить алмаз, кремний, германий, олово, а также кристаллы сложных веществ, таких как нитрид бора, нитрид алюминия, кварц, карбид кремния. Все эти вещества имеют алмазоподобную решетку.

Энергия кристаллической решетки в таких веществах практически совпадает с энергией химической связи (200 – 500 кДж/моль). Это определяет и их физические свойства: высокие твердость, температура плавления и температура кипения.

Разнообразны электропроводящие свойства этих кристаллов: алмаз, кварц, нитрид бора – диэлектрики; кремний, германий – полупроводники; металлическое серое олово хорошо проводит электрический ток.

В кристаллах с атомной кристаллической решеткой нельзя выделить отдельную структурную единицу. Весь монокристалл представляет собой одну гигантскую молекулу .

Ионная решетка

В узлах ионной решетки чередуются положительные и отрицательные ионы, между которыми действуют электростатические силы. Ионные кристаллы образуют соединения с ионной связью, например, хлорид натрия NaCl, фторид калия и KF и др. В состав ионных соединений могут входить и сложные ионы, например, NO 3 - , SO 4 2 - .

Ионные кристаллы также представляют собой гигантскую молекулу, в которой каждый ион испытывает значительной воздействие со стороны всех остальных ионов.

Энергия ионной кристаллической решетки может достигать значительных величин. Так, Е (NaCl) = 770 кДж/моль, а Е (ВеО) = 4530 кДж/моль.

Ионные кристаллы имеют высокие температуры плавления и кипения и высокую прочность, но хрупки. Многие из них плохо проводят электрический ток при комнатной температуре (примерно на двадцать порядков ниже, чем у металлов), но с ростом температуры наблюдается увеличение электрической проводимости.

Металлическая решетка

Кристаллы металлов дают примеры простейших кристаллических структур.

Ионы металла в решетке металлического кристалла можно приближенно рассматривать в виде шаров. В твердых металлах эти шары упакованы с максимальной плотностью, на что указывает значительная плотность большинства металлов (от 0,97 г/см 3 у натрия, 8,92 г/см 3 у меди до 19,30 г/см 3 у вольфрама и золота). Наиболее плотная упаковка шаров в одном слое – это гексагональная упаковка, в которой каждый шар окружен шестью другими шарами (в той же плоскости). Центры любых трех соседних шаров образуют равносторонний треугольник.

Такие свойства металлов, как высокие тягучесть и ковкость, указывают на отсутствие жесткости в металлических решетках: их плоскости довольно легко сдвигаются одна относительно другой.

Валентные электроны участвуют в образовании связи со всеми атомами, свободно перемещаются по всему объему куска металла. На это указывают высокие значения электропроводимости и теплопроводности.

По энергии кристаллической решетки металлы занимают промежуточное положение между молекулярными и ковалентными кристаллами. Энергия кристаллической решетки составляет:

Таким образом, физические свойства твердых веществ существенно зависят от типа химической связи и структуры.

Структура и свойства твердых веществ

Характеристики Кристаллы
Металлические Ионные Молекулярные Атомные
Примеры K, Al, Cr, Fe NaCl, KNO 3 I 2 , нафталин алмаз, кварц
Структурные частицы Положительные ионы и подвижные электроны Катионы и анионы Mолекулы Атомы
Тип химической связи Металлическая Ионная В молекулах – ковалентная; между молекулами – вандерваальсовы силы и водородные связи Между атомами – ковалентная
t плавления Высокая Высокая Невысокая Очень высокая
t кипения Высокая Высокая Невысокая Очень высокая
Механические свойства Твердые, ковкие, тягучие Твердые, хрупкие Мягкие Очень твердые
Электропроводность Хорошие проводники В твердом виде – диэлектрики; в расплаве или растворе – проводники Диэлектрики Диэлектрики (кроме графита)
Растворимость
в воде Нерастворимы Растворимы Нерастворимы Нерастворимы
в неполяр- ных раство- рителях Нерастворимы Нерастворимы Растворимы Нерастворимы

(Все определения, формулы, графики и уравнения реакций даются под запись.)

Любое вещество в природе, как известно, состоит из более мелких частиц. Они, в свою очередь, связаны и образуют определенную структуру, которая определяет свойства конкретного вещества.

Атомная свойственна и возникает при низких температурах и высоком давлении. Собственно, именно благодаря такому , металлы и ряд других материалов приобретают характерную прочность.

Строение таких веществ на молекулярном уровне выглядит, как кристаллическая решетка, каждый атом в которой связан со своим соседом самым прочным соединением, существующим в природе - ковалентной связью. Все мельчайшие элементы, образующие структуры, расположены упорядоченно и с определенной периодичностью. Представляя собой сетку, в углах которой расположены атомы, окруженные всегда одинаковым числом спутников, атомная кристаллическая решетка практически не меняет своего строения. Общеизвестно, что изменить структуру чистого металла или сплава можно лишь нагревая его. При этом температура тем выше, чем более прочные связи в решетке.

Иными словами, атомная кристаллическая решетка является залогом прочности и твердости материалов. При этом, однако, стоит учитывать, что расположение атомов в различных веществах также может отличаться, что, в свою очередь, влияет на степень прочности. Так, например, алмаз и графит, имеющие в составе один и тот же атом углерода, в высшей мере отличаются друг от друга по показателям прочности: алмаз - на Земле, графит же может слоиться и ломаться. Дело в том, что в кристаллической решетке графита атомы расположены слоями. Каждый слой напоминает пчелиную соту, в которой атомы углерода сочленены достаточно слабо. Подобное строение обуславливает слоистое крошение грифелей карандаша: при поломке части графита попросту отслаиваются. Другое дело - алмаз, кристаллическая решетка которого состоит из возбужденных атомов углерода, то есть тех, что способны образовывать 4 прочных связи. Разрушить такое сочленение попросту невозможно.

Кристаллические решетки металлов, кроме того, обладают определенными характеристиками:

1. Период решетки - величина, определяющая расстояние между центрами двух рядом расположенных атомов, измеряемая по ребру решетки. Общепринятое обозначение не отличается от оного в математике: a, b, c - длина, ширина, высота решетки соответственно. Очевидно, что размеры фигуры столь малы, что расстояние измеряется в наименьших единицах измерения - десятой доли нанометра или ангстремах .

2. К - координационное число . Показатель, определяющий плотность упаковки атомов в рамках одной решетки. Соответственно, плотность ее тем больше, чем выше число К. По факту же данная цифра являет собой количество атомов, находящихся как можно ближе и на равном расстоянии от изучаемого атома.

3. Базис решетки . Также величина, характеризующая плотность решетки. Представляет собой общее число атомов, которые принадлежат конкретной изучаемой ячейке.

4. Коэффициент компактности измеряется путем подсчета общего объема решетки, поделенного на тот объем, что занимают все атомы в ней. Как и предыдущие две, эта величина отражает плотность изучаемой решетки.

Мы рассмотрели всего несколько веществ, которым свойственна атомная кристаллическая решетка. Меж тем, их великое множество. Несмотря на большое разнообразие, кристаллическая атомная решетка включает в себя единицы, всегда соединенные при помощи (полярной или неполярной). Кроме того, подобные вещества практически не растворяются в воде и характеризуются низкой теплопроводностью.

В природе существует три вида кристаллических решеток: кубическая объемно-центрированная, кубическая гранецентрированная, плотноупакованная гексагональная.