Как избежать проблем при эксплуатации паровых котлов и парогенераторов. Регулирование уровня воды в барабане котла

Автоматическая система регулирования питания предназначена для поддержания материального соответствия между подачей питательной воды в котел и расходом пара. Показателем этого соответствия служит уровень воды в барабане котла.

Снижение уровня ниже допустимых пределов («упуск» воды) может привести к нарушению циркуляции в экранных трубах (опрокидывание циркуляции) и, как следствие, к пережогу труб. При значительном повышении уровня в барабане возможен захват частиц воды паром, вынос ее в пароперегреватель и турбину, что вызывает занос пароперегревателя и турбины солями и ведет к их разрушению. В связи с этим к точности поддержания заданного уровня предъявляются очень высокие требования.

Регулирование питания котлов малой производительности обычно осуществляется одноимпульсными регуляторами, управляемыми датчиками изменения уровня воды в барабане. В котлах средней и большой паропроизводительности с малым водяным объемом применяются двухимпульсные регуляторы питания котла по уровню воды и расходу пара (рис. 14.8), а также трехимпульсные, управляющие питанием котла по уровню воды, расходу пара и расходу питательной воды.

Рис. 14.8. Принципиальная схема АСР питания:
Ээкономайзер; ПП пароперегреватель; РП регулятор;
РПК – регулирующий питательный клапан

Предельные значения уровня в барабане котла определяются на основании специальных расчетов на заводе-изготовителе котельного оборудования и называются уставками по срабатыванию защит от повышения и понижения уровня («перепитка» и «упуск» уровня). Защита от повышения уровня, как правило, выполняется двухступенчатой. Первая ступень защиты воздействует па открытие задвижек аварийного слива из барабана(аварийный сброс); она имеет свою уставку, которая является промежуточной между нормальным уровнем и уставкой защиты от повышения уровня. Вторая ступень зашиты воздействует на останов котла. Операции отключения котла и открытия аварийного слива при достижении соответствующих уставок выполняются устройствами защиты (при отключении) и блокировки (открытие-закрытие аварийного слива).

Таким образом, зона работы АСР питания ограничена уставкой защиты от понижения уровня в барабане котла, с одной стороны, и уставкой открытия аварийного слива – с другой. Эти пределы обуславливают безопасность работы котла, превышение их влечет за собой аварийную ситуацию.

АСР питания барабанного котла должна обеспечить удержание уровня в допустимых пределах:

1) при стационарном режиме (при отсутствии резких возмущений по нагрузке) максимально допустимые отклонения уровня обычно не должны превышать ±20 мм;

2) при скачкообразном возмущении нагрузки на 10 % (исходная нагрузка – номинальная) максимально допустимые отклонения по уровню обычно не должны превышать ±50 мм;



3) при нормальном стационарном режиме работы котла число включений регулятора не должно превышать 6 в минуту.

На уровень в барабане котла оказывают влияние несколько факторов. Основные из них – изменение расхода питательной воды D п.в и температуры питательной воды t п.в,изменение нагрузки потребителя G п.п ; изменение расхода топлива В т .

При возмущении расходом питательной воды формы переходных процессов по уровню существенно различны в зависимости от типа экономайзера. Для котлов с некипящим экономайзером переходной характеристике присуще так называемое явление «набухания» уровня, т.е. изменение уровня в первоначальный момент в сторону, противоположную изменению расхода питательной воды. Объясняется это тем, что, например,увеличение подачи холодной воды вызывает в первый момент снижение температуры пароводяной смеси в барабанекотла и, как следствие, снижение ее уровня. В дальнейшем уровень начинает повышаться из-за того, что расход воды в котел превышает расход пара из него.

В кипящих экономайзерах питательная вода нагревается до температуры насыщения и частично (до 20 %) превращается в пар. При увеличении расхода питательной воды в первоначальный момент происходит уменьшение объема пара в кипящем экономайзере, и питательная вода занимает этот объем. В связи с этим уровень воды в барабане остается без изменения до тех пор, пока происходит замещение питательной водой парового объема в экономайзере. Для котлов с кипящим экономайзером при возмущении расходом питательной воды явление «набухания» уровня не наблюдается (рис. 14.9, б ).

Рис. 14.9. Переходные процессы по уровню при возмущении
расходом питательной воды: а – при не кипящем экономайзере;
б – при кипящем экономайзере

При изменении нагрузки потребителя (изменение расхода отбираемого пара) меняется давление пара в барабане. Так, при увеличении расхода пара давление падает и в первый момент увеличивается интенсивность парообразования, что приводит к увеличению уровня пароводяной смеси в барабане котла. В дальнейшем уровень начинает падать из-за несоответствия расходов питательной воды и пара. Временной характеристике котла при возмущении расходом пара всегда присуще явление «набухаиия» уровня (рис. 14.9, а ).

Величина «набухания» уровня зависит от параметров пара и конструктивных особенностей котла. Явление «набухания» определяется в основном разностью удельных объемов насыщенного пара и кипящей воды, с повышением давления пара этот эффект уменьшается.

Кроме того, «набухание» зависит от теплового напряжения топочных экранов: с его увеличением возрастает паросодержание в топочных экранах, поэтому резче сказывается изменение нагрузки потребителей на «набухании» уровня. У современных котлов с высоким тепловым напряжением колебания уровня при резких и значительных изменениях нагрузки достигают существенного значения. Так, для котла ТГМ-94 сброс нагрузки на 40 % приводит к изменению уровня до 120 мм даже при максимальном регулирующем воздействии расходом питательной воды, произведенным с целью удержания уровня на заданном значении.

Характер переходного процесса при возмущении расходом топлива и неизменном расходе питательной воды аналогичен характеру переходного процесса при возмущении нагрузкой потребителя (см. рис. 14.9, а ). Однако явление «набухания» здесь проявляется в несколько меньшей степени. Суть в том, что при изменении расхода топлива изменяется парообразование, одновременно изменяется давление в барабане, что ведет к изменению удельного объема пара. Оба эти фактора действуют на изменение уровня в противоположных направлениях. Вот почему при топочных возмущениях явление «набухания» проявляется в меньшей степени.

Возмущение из-за изменения температуры питательной воды может произойти при изменении количества работающих подогревателей высокого давления (ПВД), что вызовет изменение режима работы экономайзера. При увеличении температуры питательной воды и постоянном обогреве увеличивается парообразование в испарительном контуре. В результате этого уровень в барабане будет повышаться. В дальнейшем увеличение парообразования при постоянном расходе пара приведет к повышению давления в барабане и, следовательно, к уменьшению удельного объема пара, что вызовет снижение уровня. Переходный процесс при возмущении температурой питательной воды аналогичен приведенному на рис. 14.9, а .

Типовая ACP питания содержит следующие элементы: первичные измерительные преобразователи (датчики) уровня, расхода пара; регулирующие устройства; коммутирующую и управляющую аппаратуру; исполнительные механизмы; регулирующие органы.

Применяемая в настоящее время схема регулирования уровня в барабанах котлов приведена на рис. 14.10, а.

Необходимость применения сравнительно сложной системы регулирования обусловлена наличием в современных котлах высокого давления своеобразного эффекта «вскипания» уровня.

Рис. 14.10. Трехимпульсная схема регулирования уровня
в барабане парового котла

Надежность работы котельного агрегата во многом определяется качеством регулирования уровня. Повышение уровня ведет к аварийным последствиям, так как возможен заброс воды в пароперегреватель, что вызовет выход его из строя. В связи с этим к точности поддержания заданного уровня предъявляются очень высокие требования.

Сигнал по уровню Н б является корректирующим импульсом, который необходим для динамической стабилизации процесса регулирования, а также для устранения неточности характеристик датчиков по расходу питательной воды и перегретого пара. В случае неисправности или неверных показаний основного датчика уровня оператор может переключить регулирование на вспомогательный датчик уровня, при этом вспомогательный датчик уровня становится основным, а основной датчик уровня – вспомогательным. По вспомогательному датчику уровня производится сигнализация рассогласования показаний датчиков уровня.

Сигнал по расходу питательной воды G п.в поддерживает материальный баланс между расходом воды и пара (то есть регулятор стремится уравнять расход воды и пара), делает регулирование более стабильным и независимым от изменения давления питательной воды.

Сигнал по расходу пара G п.п позволяет регулятору быстрее реагировать на изменение нагрузки, также получать нужную величину и знак (направление движения ИМ) регулирования.

Основным узлом регулятора питания является процессор (электронный прибор типа РС29 или микропроцессорный контроллер типа «Ремиконт»), в котором соответствующим образом суммируются сигналы по уровню в барабане, расходу перегретого пара и расходу питательной воды и сравниваются с заданием.

Обобщая имеющийся опыт по динамике уровня в барабанных котлах, можно принять для расчетов, что

W об (p ) = (ε/p ) e p τ ,

где ε = 10 3 /F б (р в – р п) мм/кг; F б – площадь зеркала испарения барабана котла, м 2 ; р в, р п – плотности воды и пара линии насыщения, кг/м 3 ; τ – время запаздывания, с.

Величина запаздывания τ расчету не поддается и определяется экспериментально. Значение τ в зависимости от давления в барабане котла Р б находится в пределах 7–12 с.

При Р б = 13 кг/см 2 из таблиц термодинамических свойств воды и водяного пара р в = 171,3 кг/м 3 ; р п = 31,96 кг/м 3 .

Cтраница 1


Упуск уровня воды в котле ниже допускаемого может повлечь за собой ухудшение или даже срыв циркуляции, так как опускные грубы циркуляционных контуров ввальцовываются в верхние барабаны иногда на значительной высоте от нижней образующей барабана.  

Упуск уровня воды возможен также и в редких случаях неисправности или выхода из строя автоматических регулирующих устройств.  

При упуске уровня воды в барабане котла пар начинает поступать в водоспускные трубы задолго до опорожнения барабана. Опасность возникает, когда в барабане над опускными трубами еще имеется слой воды. При возникающей неравномерной, толчкообразной циркуляции трубы перегорают не только в верхней части топочной камеры, но и гораздо ниже, иногда даже на уровне горелок. Все это указывает на то, что при упуске уровня нужно опасаться не только оголения верхних концов экранных труб, но и нарушения циркуляции в экранах из-за появления пара в опускных трубах.  

Основными причинами разрыва стенок барабана, экранных и кипятильных труб в период эксплуатации котла могут быть: упуск уровня воды и последующая подкачка воды на раскаленные стенки барабана; значительное превышение допустимого рабочего давления в котле; нарушение циркуляции воды в котле; отложение накипи на поверхностях нагрева, вызывающей местный перегрев и пережог металла; плохое качество металла (наличие в нем раковин, инородных включений и т.п.); наличие трещин в сварных и заклепочных соединениях и трубных решетках; коррозия и эрозия металла; некачественное изготовление; нарушение водно-химического режима.  

Для выносных циклонов возможно существенное снижение уровня воды в них, что может привести к пережогу экранных труб в результате упуска уровня воды из циклонов и ухудшения охлаждения труб водой.  

При этом следует соблюдать следующие основные положения: прекратить подачу топлива и воздуха; ослабить тягу; при сжигании топлива в слое необходимо незамедлительно удалить его из топки; в особых случаях горящее топливо следует залить водой; отключить котел от паровой магистрали; открыть продувку. При останове котла после глубокого упуска уровня воды в барабане подпитка котла запрещается. После стравливания пара необходимо остановить дымосос.  

При отключении одного из этих работавших блоков на его турбине по невыясненной причине сработал стопорный клапан и от его блок-контактов произошло отключение двух секций с.н. 6 кВ, что при отключившемся резервном трансформаторе с.н. привело к останову двух котлов и двух питательных электронасосов. В результате этого на электростанции снизилось давление свежего пара в главных паропроводах, уменьшилась производительность двух находившихся в работе турбонасосов питательной воды, понизился ее уровень в двух работавших барабанных котлах и они были отключены защитой, срабатывающей при упуске уровня воды в барабане.  

Система специальных защитных блокировок должна обеспечить отключение подачи топлива: при нарушении нормальной последовательности пусковых операций; при отключении дутьевых вентиляторов; понижении давления газа ниже допустимого предела; при нарушении тяги в топке котла; срывах и погасании факела; при упуске уровня воды в котле и в других случаях отклонения параметров работы котлоагрегатов от нормы.  

Различные модификации системы AM К обеспечивают поддержание в заданных пределах давления пара и уровня воды в котле, пропорционирование подачи воздуха в соответствии с подачей газа, а также защиту котлоагрегата при упуске воды, превышении допустимого предела давления пара, прекращении подачи воздуха и электроэнергии, погасании пламени горелки или форсунки, прекращении тяги. Электрической схемой автоматизации предусмотрен полуавтоматический пуск и останов котлоагрегата, световая сигнализация о нормальной работе котла и наступлении аварийных режимов. Возможно осуществление звуковой сигнализации при упуске уровня воды или прекращении циркуляции воды.  

Испытаниями установлено, что попадание пара в опускные трубы является следствием образования в барабане на поверхности воды воронок, через которые пар засасывается в них, особенно при понижении уровня воды ниже допустимого. Также бывают случаи попадания в опускные трубы паровых пузырей, выходящих из экранных (подъемных) труб, если последние расположены вблизи от входа воды в опускную систему и не отделены от него перегородкой. Особенно опасными являются случаи засасывания пара в опускные трубы при глубоком упуске уровня воды в барабане, когда при этом возникает резкое повышение температуры металла многих труб, в которых образуется пар, с последующими их разрывами в местах образования отдулин.  

На котлах с применением ступенчатого испарения повреждение экранных труб происходит, как правило, в циркуляционных контурах соленых отсеков барабана или выносного циклона. В связи с этим при нерегламентированном понижении уровня воды в барабане котла обслуживающему персоналу необходимо особенно тщательно контролировать уровень воды в соленом отсеке. Циркуляционные аварии, связанные с упуском уровня воды в барабане котла, если не приняты своевременные меры или произошло грубое нарушение правил эксплуатации котельных установок, могут иметь тяжелые последствия. Так, опыт эксплуатации паровых двухбара-банных котлов производительностью 1 т / ч (типа Е-1 / 9) с давлением пара 0 9 МПа показал, что при продолжительных глубоких упусках уровня воды в верхнем барабане котла, сопровождающихся неправильными действиями обслуживающего персонала, возникали тяжелые аварии с большими повреждениями оборудования.  

Страницы:      1

Котельная давно стала неотъемлемой частью большинства коттеджей. Подвести к удаленному строению центральное отопление чаще всего представляется невозможным, да это и невыгодно. Прогреть несколько этажей в зимние холода, подать горячую воду в верхние этажи и во все батареи, обеспечить нагрев системы теплых полов – все это возможно только после сооружения котельной установки.

Однако при условиях несоблюдения некоторых установленных практических правил кроме комфорта такое оборудование может нести и серьезную опасность. Авария котла может привести к взрыву с катастрофическими последствиями. К аварии приводят несколько наиболее распространенных причин:

  • взрыв топлива;
  • недостатки водоподготовки;
  • понижение уровня воды;
  • загрязнение котловой воды;
  • механическое повреждение труб;
  • несоблюдение регламента разогрева;
  • нарушение технологии продувки;
  • сверхнормативное форсирование;
  • ненадлежащие условия хранения;
  • понижения давления.

Рассмотрим как сами опасные факторы, так и способы предосторожности, которые позволят не опасаться и использовать безопасную работу котлов.

Взрыв топлива

При эксплуатации котлов можно столкнуться с опаснейшей ситуацией – взрывом в топке. Причиной большинства взрывов становится недостаточная очистка топки или перенасыщение топливом горючей смеси. Перенасыщение горючей смеси становится следствием накопления в топке несгоревшего топлива. Это может произойти по ряду различных причин: из-за колебаний давления топливоподачи, повреждения оборудования, сбоя регуляторов.

Множество случаев взрывов происходили после того, как в работе горелок наступали перебои. Так, засорение топливной форсунки приводит некачественному распыливанию, вызывающему отрыв пламени или нестабильность горения. После того, как происходит последующее впрыскивание топлива в топке увеличивается концентрация его паров. Несгоревшее топливо накапливается и в случаях долгой работы горелки с некачественным распыливанием.

Вспышка несгоревшего топлива приводит к взрыву. Избежать этого можно при соблюдении следующего простого правила: никогда нельзя производить впрыскивание топлива в загазованную томную топку. Прежде следует отключить все горелки вручную и тщательным образом продуть топку воздухом. И только после такой несложно операции и устранении неисправностей с зажиганием горелки снова могут быть включены.

Понижение уровня воды

Структура углеродистой стали, из которой изготавливаются стенки котлов, изменяется при превышении температуры предела в 427°C – она теряет прочность. Но рабочая температура топки – больше 982°C, поэтому котел охлаждается водой, протекающей через его трубы. Если же он будет длительное время работать при недостатке воды, стальные трубы в буквальном смысле могут расплавиться как сгоревшие восковые свечки.

Для уменьшения вероятности аварий, возникающих из-за этой причины, должно быть предусмотрено отключение котла, наступающее при уменьшении уровня воды. Выполняют такую задачу датчики уровня воды поплавкового типа или прямого действия. Критическим звеном системы при этом становится байпас пускового устройства. Благодаря бейпасу обслуживающий персонал может продувать засорившиеся секции, проводить их очистку от накипи и шлама, имитировать аварийную ситуацию без остановки котла (так проверяется контур отсечки).

Недостатки водоподготовки

В трубах, из-за наличия в воде магниевой или кальциевой жесткости, образуется накипь. Ионы жесткости удаляются в процессе водоподготовки. Нарастание накипи приводит к перегреву труб, которые предназначены для отвода тепла от котла. Накипь снижает диаметр труб, создает дополнительный слой теплоизоляции и ухудшает теплообмен. Результатом может стать местное прогорание трубы.

Для того, чтобы предотвратить этот процесс, в котловой воде содержание солей жесткости не должно превышать допустимых пределов. При повышенной рабочей температуре и повышенном давлении котельной установки ужесточаются и требования к водоподготовке.

С котлами низкого давления понижение кальциевой и магниевой жесткости происходит при помощи ионообменных установок. Для котлов с паротурбинными установками, отличающихся режимами высокого давления и температуры, требуется полная деминерализация воды с удалением иных примесей наподобие силикатов. Если соединения кремния не будут удаляться, при испарении они смешаются с водяными парами и образуют осадок на лопатках турбин и другом оборудовании.

В водоподготовку для котлов входит и обработка химреактивами. Реактивы связывают частицы загрязнений, преобразуя их в шлам, не образующий на поверхности осадков. Шлам удаляется при промывке котлов. Недостаточная водоподготовка служит разрушительной силой для котла, поэтому в продлении его долговечности качество воды играет большую роль.

Загрязнение воды

Вода котельных установок состоит из смеси обратного конденсата и подпитки. И вопрос ее загрязнения очень сложный, ему посвящают целые книги. В загрязнения обычно входит кислород и смесь из смолы, масла, химикатов и металлов.

Кислород, растворенный в воде, постоянно угрожает целостности труб. В котельных установках обычно имеется нагреватель-деаэратор, удаляющий из подпиточной воды кислород. В резервуары деаэратора котельных установок, рабочее давление которых до 7000 кПа, обычно добавляется сульфит натрия – поглотитель свободного кислорода.

Самый опасный вид кислородной коррозии — язвенная кислородная коррозия. Язвой называется коррозия, сконцентрированная на совсем маленьком участке поверхности. Даже небольшое распространение коррозии в целом может привести к сквозной ржавчине из-за возникновения такой язвы. Катастрофические последствия кислородной коррозии требуют регулярной проверки работы поглотителей кислорода и деаэраторов и контроля качества воды.

Необнаруженное своевременно загрязнение возвратного конденсата становится еще одной причиной загрязнения котловой воды. Загрязнения могут состоять из различных частей: от железа и меди, до производственных химикатов и мела. Попадающие в воду металлы — конструктивные материалы конденсатопроводов и оборудования, а производственные химикаты и масла появляются из-за коррозионных утечек теплообменников, сальниковых уплотнений, насосов и т.д.

Опасные химикаты в большом количестве могут попасть в воду из-за аварий технологического оборудования. Поэтому постоянный мониторинг возвратного конденсата становится залогом бережной эксплуатации котельной установки.

Серьезное загрязнение котла может быть вызвано и попаданием в воду ионообменной смолы. Это происходит при повреждениях вспомогательной обвязки ионообменных установок или внутренних трубопроводов. Весьма эффективный и очень дешевый способ, предотвращающий подобные явления – установка на коммуникациях ионообменной установки смолоуловителей. Смолоуловители смогут не только защитить котел, но и в случае аварии предотвратят потерю ионообменных смол – весьма ценного материала.

Загрязнение котловой воды протекает и как постепенное ухудшение, и как мгновенная авария. Снижает возможность неприятностей обоего типа качественное и постоянное обслуживание. Мониторинг подпиточной и котловой воды позволяет получить своевременную информацию об уровне загрязнения.

Несоблюдение технологии продувки

Постоянная продувка системы и периодическая промывка поддонов приводит к уменьшению концентрации взвешенных твердых примесей, содержащихся в котловой воде. Превышение концентрации загрязнений котловой воды способно создать такие проблемы, как вспенивание воды в барабане или нестабильность ее уровня. В результате может происходить загрязнение пароперегревателей, унос капельной влаги паром, ложные срабатывания сигнализации уровня воды.

При правильно спроектированной системе продувки происходит мониторинг котловой воды и поддержание такой интенсивности продувки, обеспечивающей допустимую концентрацию примесей. Промывка грязевиков и поддонов предотвращает накопление шлама. Но продолжительная продувка образующих экраны топки секций способна вызвать их повреждение из-за перегрева, наступающего вследствие изменения циркуляции естественной воды. Рекомендуется вместо этого при каждом отключении котла открывать вентили продувки секций до момента падения давления в системе к уровню атмосферного давления.

Нарушение регламента разогрева

Сильнейшее испытание, которому может подвергнуться котел — нарушение правил разогрева. При процедурах пуска и остановки оборудование получает серьезные нагрузки. Работа в постоянном режиме таких нагрузок не доставляет, поэтому при частых включениях-отключениях соблюдение правил должно быть более строгим, чем при работе в расчетном режиме. Поэтапные пусковые операции и корректный регламент уменьшают вероятность аварии и способствуют продлению службы оборудования.

Конструкция типового котла подразумевает использование различных материалов: сталь различной толщины (толстой – для барабана, тонкой – для труб), огнеупорных и теплоизоляционных материалов, массивных чугунных элементов. Скорость, с которой они прогреваются и остывают, различна. Ситуация становится еще более сложной, если материал одновременно подвергается воздействию различных температур. К примеру, паровой барабан при уровне воды в пределах нормы контактирует в разных частях с водой, воздухом и паром. Во время холодного старта быстрее всего нагревается вода, поэтому нижняя часть барабана испытывает тепловое расширение большее, чем верхняя. В итоге нижняя часть становится длиннее верхней и барабан испытывает деформацию. Следствием серьезной деформации становится появление трещин труб между шламовым и паровым барабанами.

Очень быстрый разогрев во время холодного старта может повредить обмуровку котла. У обмуровки низкая теплопроводность, поэтому она прогревается дольше металла. При непрогретой топке материал обмуровки поглощает из воздуха влагу. Медленный прогрев постепенно просушивает обмуровку и не допускает вскипания влаги, которое могло бы привести к растрескиванию кирпичей. Согласно стандартному графику разогрева типового котла повышение температуры должно происходить со скоростью не выше 55°C в час.

Опасность форсированного режима

Эксплуатация котла в режиме, превышающем максимально допустимую продолжительную нагрузку, согласно рекомендациям изготовителей, не может превышать по длительности 2-4 часа.

Физические ограничения конструкций котлов (размеры паропроводов и топки) могут привести к серьезным проблемам, связанным с падением давления пара и уменьшением теплоотдачи. Подобные ограничения становятся причиной проблем, ассоциирующихся с перегревом котла:

  • эрозии труб, золоочистителей, газоходов и экранов;
  • разрушением обмуровки, материала труб, газоходов;
  • коррозии труб пароперегревателей и стенок топки;
  • уносом паром твердых взвешенных частиц и капельной влаги, что ведет к повреждению лопаток турбин, пароперегревателей, другого технологического оборудования.

Проблемы, связанные с перегревом котла, во многом зависят от вида используемого топлива. Но независимо от топлива форсирование работы котла увеличивает скорость и объем дымовых газов и их давление, что оказывает влияние на эрозию. Возникает повышение температуры перегородок и стенок труб, что сказывается на прочности металла. Форсаж топки может вызывать распространение пламени на экраны, а это также становится причиной местной коррозии.

Механическое повреждение труб

Котел практически не содержит одинаковых элементов. Особенно это можно отнести к трубам, из которых состоят секции конвективного нагрева и экраны топки. Повреждение одной из них приводит к остановке всего оборудования. А учитывая то, что толщина таких труб не превышает 2-3 миллиметров, становится понятно, что они легко могут быть повреждены. Причиной повреждения могут стать:

  • удары при сборке или в процессе изготовления;
  • неверная направленность при продувке для удаления сажи;
  • приводящий к эрозии труб сдув копоти влажного пара.

Проектирование новых котлов предусматривает увеличение толщины стенок труб. Это ведет к повышению стоимости, но предоставляет запас прочности. К тому же в местах изгиба толщина стенки становится меньше и при первоначальной малой толщине в месте сгиба она может не соответствовать допускаемому стандарту.

Неправильное хранение

Небрежное хранение котла может привести к коррозии поверхностей и со стороны воды, и со стороны газов. Коррозия газовой стороны происходит, если ранее в котле использовалось сернистое топливо. Есть такие участки топки, с которых золу при обычной продувке удалить невозможно. Прежде всего, это зазоры между обмуровкой и трубами и между перегородкой на входе и трубами. При разогретом котле коррозия не может появиться, так как на поверхности нет влаги. Но после остановки поверхности обмуровки и зола начинают абсорбировать влагу, что через время приводит к началу коррозии. Локализованную язвенную коррозию можно установить простукиванием и изменившемуся звуку.

Один из способов избежать таких последствий – теплое хранение. В качестве обогревателя может быть использован шламовый барабан или продувка теплоносителем, идущим от другого, работающего, котла. Этого достаточно для поддержания температуры поверхности превыщающей точку росы кислотного раствора.

Еще один способ хранения малых котлов – сухое хранение. Для этого в котел вдувают азот, а его входные отверстия уплотняются абсорбентом-осушителем.

Срыв в вакуум

Конструкции котлов могут работать с избыточным давлением, однако не предусматривают возможности падения давления до уровня ниже атмосферного — вакуума. Его возникновение возможно во время остановки котла. При охлаждении происходит понижение уровня воды и конденсация пара. В итоге давление может снизиться до уровня ниже атмосферного. В итоге вакуум приведет к утечке через концы труб, развальцованные таким образом, что их уплотнение происходит при избыточном давлении. Избежать проблемы достаточно просто — необходимо приоткрыть в паровом барабане вентиляционное отверстие еще тогда, когда в нем имеется избыточное давление.

Необходимые меры предосторожности

  • проверять пламя, чтобы своевременно замечать неполадки с горением;
  • при погасании горелки определить причину, а не пытаться повторно ее зажечь;
  • прежде чем зажигать горелки, тщательно очищать топку. Особенно важно это сделать, если в топку было пролито жидкое топливо. Избыток горючих газов, концентрация которых может стать опасной, удаляется продувкой. Ее следует производить при малейших сомнениях.
  • не применять необработанную воду. Проводить проверку оборудования водоподготовки, качество воды должно соответствовать нормам, принятым для данного давления и температуры;
  • для избегания накопления шлама в тупиковых участках водоохладителей, водяного контура и т.п. Необходима их регулярная промывка. Циркуляция воды никогда не должна быть остановлена.
  • для удаления из деаэратора неконденсируемых газов необходима его постоянная продувка. Также необходимо контролировать содержание свободного кислорода, содержащегося в выходящей из деаэраторов воде, рабочее давление деаэраторов и температуру воды в баках-аккумуляторах;
  • проводить мониторинг возвратного конденсата. В случае его загрязнения из-за аварии технологического оборудования обеспечить немедленный слив в канализацию;
  • постоянно продувать котел для поддержания требуемого качества котловой воды, периодически промывать барабан-грязевик. Поверхности топки не должны продуваться в момент работы котла;
  • регулярно проводить проверку внутренних поверхностей деаэратора на коррозию. Коррозия деаэратора может привести к тому, что он проржавеет насквозь. Это приведет к бурному вскипанию воды и наполнению паром всего помещения котельной;
  • если на поверхности воды появятся признаки отложения накипи, необходимо отрегулировать водоподготовку;
  • всегда придерживаться стандартного графика разогрева воды, предусматривающего рост температуры со скоростью не выше 55°C в час. Если котел длительное время эксплуатировался с минимальной нагрузкой, разогрев может протекать со скоростью выше указанной. Поэтому для нормального темпа разогрева в стартовом режиме должна быть предусмотрена работа горелок с перерывами;
  • при отключении котла на длительное время, необходимо поддерживать его в сухом и теплом состоянии. Использовать сульфат натрия – это позволит поглотить кислород из котловой воды и заполнять азотом. При хранении в сухом состоянии вместе с азотом в барабан поместить абсорбент влаги;
  • если давление падает ниже показателя 136 кПа, открывать в паровом барабане вентиляционное отверстие.

Регулирование питания барабанного котельного агрегата водой.

Автоматизация питания барабанных котлоагрегатов предусматривает автоматическое управление питанием водой как при условиях нормального протекания эксплутационных режимов работы котла, так и при режимах пуска и останова котельного агрегата.

В свою очередь нормальные эксплутационные режимы работы могут протекать при постоянном и переменном (скользящем) давлении свежего пара.

Показателем соответствия материального баланса между паром и водой – расхода свежего пара и расхода питательной воды служит уровень в барабане котла. Отклонение уровня воды в барабане от среднего значения характеризует наличие небаланса между притоком питательной воды и расходом пара. Оно (отклонение) происходит также вследствие изменения паросодержания пара в пароводяной смеси подъемных труб за счет колебаний давления пара в барабане котла или изменений тепловосприятия испарительных поверхностей нагрева.

Так, при увеличении расхода пара в первый момент после возмущения уровень воды в барабане возрастает в результате резкого уменьшения давления пара, что в свою очередь приводит к увеличению паросодержания в подъемных трубах циркуляционного контура и росту уровня. Это явление называется набуханием уровня.

При изменении нагрузки котла и, как следствие, изменении его паропроизводительности средний уровень воды должен поддерживаться постоянным.

Максимально допустимые отклонения уровня воды в барабане составляют + 100 мм от среднего значения, установленного заводом-изготовителем. При этом средний уровень не обязательно должен совпадать с геометрической осью барабана. Снижение уровня ниже видимой части водомерного стекла, установленного на барабане котельного агрегата, считается «упуском» воды, а превышение его верхней видимой части – «перепиткой». Расстояние между этими критическими отметками составляет 400 мм.

Снижение уровня ниже места присоединения опускных труб циркуляционного контура может привести к нарушению питания и охлаждению водой подъемных труб, нарушению их прочности в местах стыковки с корпусом барабана, а в наиболее тяжелых случаях и пережогу.

Чрезмерное повышение уровня может привести к ухудшению действия внутрибарабанных сепарационных устройств, заносу солями пароперегревателя, а также забросу частиц воды в турбину, что может явиться причиной тяжелых механических повреждений лопаток ее ротора.

Снабжение барабана водой осуществляется по одной, реже двум ниткам трубопроводов питательной воды, одна из которых служит резервной.

Схема автоматического регулирования питания котельного агрегата. В АСР питания котла водой реализован принцип комбинированного регулирования по возмущению – при изменении расхода пара или питательной воды и отклонению – при изменении уровня воды в барабане котла.

Регулятор питания должен обеспечить постоянство среднего уровня воды независимо от нагрузки котла и возмущающих воздействий (Рис. 12.7).

В АСР питания используют для этих целей трехимпульсный регулятор питания. Сигналы по возмущению: расход свежего пара D n , расход питательной воды D n в. Сигнал по отклонению: уровень в барабане котельного агрегата H б. Сигнал по расходу питательной воды используется как выключающий для снятия в статике сигнала по расходу пара.

Регулятор питания перемещает регулировочный орган на линии питательной воды при появлении сигнала небаланса между расходами питательной воды и перегретого пара. Помимо этого он воздействует на положение клапана при отклонении уровня воды в барабане котельного агрегата от заданного значения. Использование сигналов D n и D n в обеспечивают быстродействие АСР питания, сигнал H б – заданную точность поддержания уровня в барабане.

В схеме измерительного блока регулятора питания датчики D n , D пв и H б включены таким образом, что при понижении уровня воды в барабане котлоагрегата, увеличении расхода пара, уменьшении расхода питательной воды, они действуют в одном направлении – в сторону открытия питательного клапана, а при повышении уровня, уменьшении расхода пара и увеличении расхода питательной воды в сторону закрытия питательного клапана.

Рис. 12.7 Принципиальная схема регулирования питания барабана котла.

1-экономайзер, 2-барабан котла, 3-пароперегреватель, 4-регулятор питания, 5-датчик уровня, 6-задатчик, 7-датчик расхода пара, 8-датчик расхода питательной воды, 9-регулятор производительности, 10-питательный клапан, 11-питательный насос, 12-гидромуфта, 13-электродвигатель, 14 – дифференциальный манометр.

В качестве регулировочных органов питания используются шиберные клапаны и клапаны золотникового типа.

При полном сбросе нагрузки на котле вследствие повышения давления пара в барабане возможно срабатывание предохранительных клапанов. Количество пара, проходящее через эти клапаны не учитывается датчиком расхода пара. Регулятор питания при этом становится двухимпульсным и будет поддерживать заниженный уровень в барабане в соответствии с неравномерностью регулятора по уровню. Поэтому необходимо выбирать минимально возможную величину неравномерности по уровню, обеспечивающую приемлемые динамические качества АСР питания.