Хво для котельных. Водоподготовка котельных

Химводоподготовка для котельных подразумевает под собой комплексную обработку воды, поступающей в водогрейные и паровые котлы, специальными химическими реагентами с целью снижения жесткости воды и ее очищения от вредных примесей. Химводоподготовка для котельных различного типа обеспечивает сохранение работоспособности всех систем котельной. Главная задача химводоподготовки для котельных - предотвратить коррозию и защитить нагревательные элементы от образования накипи.

Таким образом, основным и обязательным элементом для котельных: будь то водогрейные или паровые установки, является процесс умягчения воды, который осуществляется с помощью специальных установок непрерывного действия. Подобные установки также используют на промышленных предприятиях с непрерывным производственным циклом.

Умягчение воды позволяет не только предотвратить образование твердых солевых отложений на внутренних поверхностях котлов, труб и нагревательных элементов, но и способствует экономному потреблению различных моющих средств. Практика показывает, что комплексная химводоподготовка для котельных снижает жесткость воды до 0,07-1 мг. экв/л (воду с таким показателям жесткости используют на текстильном, бумажном, химическом производствах), в некоторых случаях, например, для питания котлов среднего и низкого давления, в которых допускается использование воды с показателем жесткости не более 0,3 мг. экв/л, требуется двухступенчатая обработка воды, после которой показатель жесткости не превышает 0,01-0,02 мг. экв/л.

Как правило, умягчающие воду установки и , используемые для химводоподготовки для котельных, представляют собой конструкцию из двух фильтров, параллельно скрепленных между собой. Сами фильтры – выполненные из стеклопластика корпуса, которые имеют ламинированную полиэтиленом внутреннюю поверхность. Другими обязательными элементами установки для химводоподготовки в котельных являются два автоматических управляющих клапана, фильтрующая среда, дренажно-распределительная система и баки, в которых приготавливается раствор реагентов.

Существуют множество моделей фильтров непрерывного действия, применяемых в системах химводоподготовки для котельных, но все они работают по одной из трех схем: Twin Alternating, Twin Parallel (Duplex) и Triplex.

Первая из схем работает следующим образом: два фильтра включены параллельно, однако, только один из них работает в режиме фильтрации, другой же может быть либо в состоянии регенерации, либо ожидания. Когда цикл фильтрации завершается, фильтры меняются ролями и следующий цикл фильтрации осуществляется уже тем фильтром, который был в режиме ожидания или регенерации. Установки с подобными системами химводоподготовки для котельных используются, прежде всего, там, где необходимо постоянно поддерживать заданную изначально производительность.

Вторая из названных схем подразумевает одновременную работу двух параллельно включенных фильтров в режиме фильтрации. Такая отличается двойной производительностью. Однако фильтры также нуждаются в периодической регенерации, которая происходит по очереди и мере надобности. Соответственно, в какой-то момент на определенный временной период в режиме фильтрации будет находиться только один фильтр, в результате чего производительность установки резко падает.

Схема Triplex представляет собой усовершенствованию схему Twin Parallel: к двум параллельно включенным фильтрам, работающим в режиме фильтрации, подсоединяется третий. Такая установка химводоподготовки для котельных отличается тройной производительностью в момент работы всех трех фильтров. В режим регенерации фильтры переключаются также поочередно. Таким образом, двойная производительность схемы Twin Parallel поддерживается непрерывно.

Фильтрующая среда в установках для химводоподготовки для котельных может быть различной. Среди методов, применяемых для умягчения воды, наиболее распространенными являются: реагентный, при котором в воду вмешивают реагенты, вступающие в химические реакции с солевыми растворами, содержащимися в воде. В результате образуются малорастворимые кальциево-магниевые соединения, которые выпадают в осадок.

Другой метод – катионитовый, основанный на свойствах некоторых веществ, заключается в том, чтобы обменивать свои катионы (это может быть натрий или водород) на катионы магния и кальция, которые содержаться в соли, растворенной в воде. В результате образуются натриевые соли, не передающие воде жесткость. Зачастую в процессе комплексной химводоподготовки для котельных используют комбинацию названных методов умягчения воды.

Основной фактор, влияющий на долговечность энергетического оборудования, — это первичная водоподготовка. Она заключается в механической и химической очистке воды, а также в ее умягчении. Соблюдение нормативного состава обеспечивает расчетный срок эксплуатации оборудования.

Межремонтный пробег котельной установки напрямую зависит от физического, а также химического качества воды и пара. Отсутствие контроля за физико-химическим состоянием воды приводит к образованию накипи на рабочих поверхностях котла и коммуникаций.
Результатом некачественной водоподготовки для котельных установок является снижение теплопередачи и пропускной способности парогенеаторных трактов из-за уменьшения рабочих сечений (их загрязнения). Также может наблюдаться явление кислородной и углекислотной коррозии деталей, соприкасающихся с рабочей средой.

При отсутствии водоподготовки, указанные факторы резко снижают КПД котельных установок, уменьшают расчетный срок эксплуатации и могут приводить к аварийным ситуациям. В таком случае остро становится вопрос о рентабельности пара как теплоносителя.
Основной причиной снижения производительности котельной установки является наличие в воде солей жесткости — это химические соединения магния и кальция. Они образуют на рабочих поверхностях котла слой накипи, который ухудшает теплопроводность материала. В этом случае растет потребление энергоносителя.

Химическая водоочистка (ХВО)

Химическая водоочистка (ХВО) — это совокупность мер докотловой и внутрикотловой водоподгтовки котельной с целью увеличения срока эксплуатации котельного оборудования. Она выполняется в несколько этапов с применением специальных реагентов, обеспечивающих умягчение воды, предотвращение накипи и коррозии.
В котле происходит процесс непрерывного парообразования, при этом увеличивается концентрация солей и других химических примесей, содержащихся в котловой воде. Уменьшение их содержания в питательном потоке и снижение их влияния на рабочие поверхности котельной установки — это ключевые задачи химводоподготовки.

Посторонние примеси в воде

Все посторонние примеси, в воде, условно подразделяются на три основные группы:
● нерастворимые механические;
● растворенные осадкообразующие;
● коррозионноактивные.
Каждая из них является потенциальной причиной возникновения неполадок и отказов энергетического оборудования. Системы без предварительной механической очистки подвержены серьезным технических проблемам, которые могут повлиять на стабильную работу насосов, трубопроводов и запорной арматуры.

Нерастворимые механические примеси
К нерастворимым механическим примесям относят глину и песок, которые обязательно входят в состав воды; продукты коррозии рабочих поверхностей, возникающие при химическом взаимодействии материала деталей, соприкасающихся с растворимыми примесями рабочей среды.

Растворимые осадкообразующие примеси
Растворенные осадкообразующие примеси могут привести к снижению энергоэффективности паровой котельной, а также к вспениванию воды и паровому уносу загрязнителей. Впоследствии выйти из строя может не только энергетическая установка, но и элементы теплосети.
Осадочное образование карбонатов (накипь) связано с наличием в воде солей жесткости. Также, при достижении температурного предела в 130 °С и выше, снижается растворимость сульфата кальция и происходит образование плотной гипсовой накипи на рабочих стенках.

Коррозионноактивные примеси
К коррозионноактивным примесям воды относят кислород, двуокись углерода и хлориды. Они вызывают утонение материала узлов установки с необустроенной водоподготовкой котельной. Вторичным продуктом коррозионного воздействия являются осадочные примеси, которые также приводят к порче оборудования.

Типы коррозионных процессов

Основными типами коррозионных процессов котельного оборудования являются:
● химический;
● электрохимический.

Химическая коррозия в котловой аппаратуре, обычно, вызывается наличием газовых примесей в воде и растворенных хлоридов. При повышении температуры воды резко снижается растворимость газов и увеличивается их десорбция, что усиливает явление коррозии.
Кроме того, при нагреве воды происходит разложение гидрокарбонатов на двуокись углерода и карбонаты, которые уносятся вместе с паром. Таким образом, снижается уровень pH и повышается коррозионная активность конденсата. А наличие хлоридов в воде ведет к разрушению пассивирующей пленки на металле и вторичной коррозии.
Явление электрохимической коррозии возникает при неполной очистке воды от соединений марганца и железа. Оно происходит в присутствии углекислого газа и кислорода. Наиболее сильно электрохимической коррозии подвержены некачественные сварные соединения и развальцованные концы труб.

Внутрикотловая обработка воды

Основные задачи внутрикотловой водоподготовки:
● защита от коррозии;
● предотвращение накипеобразования при сбое химводоподготовки;
● коррекция уровня pH.

Современные реагенты обладают комплексным действием и позволяют облегчить задачу внутрикотловой водоподготовки.


Качественная вода для котловых систем

Для получения качественной котловой воды необходимо использовать специально разработанные системы водоподготовки, которые отвечают нормативным требованиям, разработанным надзорными органами. Такие системы способны обеспечить идеальный физико-химический состав рабочего тела котла и его долговечность. "ЭНЕРГИЯ и Ко" оказывает котельной. Специалисты компании осуществляют подбор систем химводоподготовки для новых котельных, а также проводят модернизацию водоочистных установок для уже действующих.

Фильтры натрий-катионитные параллельно-точные первой ступени ФИПа I, предназначены для обработки воды с целью удаления из нее ионов-накипеобразователей (Са 2+ и М 2+) в процессе катионирования. Фильтры используются на водоподготовительных установках промышленных и отопительных котельных.

Пример условного обозначения фильтра производительностью 20 м 3 /ч для умеренного климата (У) и категории размещения при эксплуатации (4) по ГОСТ 15150-69: ФИПа I – 1,0-0,6 Na У4. Диаметр - 1000 мм., рабочее давление - 0,6 МПа.

Устройство

Натрий-катионитные параллельно-точные фильтры первой ступени (см. рис. 1) представляют собой вертикальный однокамерный цилиндрический аппарат и состоят из следующих основных элементов: корпуса, верхнего и нижнего распределительных устройств, трубопроводов и запорной арматуры, пробоотборного устройства и фильтрующей загрузки.


Рис. 1. Фильтр натрий-катионитовый параллельно-точные 1-ой ступени ФИПа I

Стальной цилиндрический корпус с эллиптическим верхним и нижним днищами, днища приварены к цилиндрической обечайке фильтра. Корпус фильтра снабжен верхним люком, предназначенным для загрузки фильтрующего материала и периодического осмотра его поверхности и лазом Ду 400 мм для проведения внутренних монтажных работ.

В нижней части обечайки фильтра имеется отверстие для выгрузки фильтрующего материала закрытое заглушкой. В центре верхнего днища фильтра проварен фланец, к которому снаружи присоединен трубопровод, подающий воду на обработку. В центре нижнего днища снаружи приварен патрубок, отводящий отработанную воду.

Верхнее распределительное устройство предназначено для отвода обрабатываемой воды и регенерационного раствора и отвода взрыхляющей воды.

Нижнее распределительное устройство предназначено для обеспечения равномерного сбора обработанной воды, равномерного распределения взрыхляющей воды. Нижнее распределительное устройство представляет собой горизонтальную трубчатую систему с равномерно расположенными по всей поверхности щелевыми колпачками.

Верхнее и нижнее распределительные устройства устанавливаются строго горизонтально.

Фронтовые трубопроводы с запорной арматурой позволяют осуществлять подвод к фильтру и отвод из него всех потоков воды и регенерационного раствора в процессе эксплуатации фильтра.

Пробоотборное устройство размещено по фронту фильтра и состоит из трубок, соединенных с трубопроводами подаваемой на обработку и обработанной воды, вентилей и манометров, показывающих давление до и после фильтра.

Устройство для отвода воздуха служит для периодического отвода воздуха, скапливающегося в верхней части фильтра и представляет собой трубку с вентилем.

Принцип работы

Исходная вода поступает в фильтр под напором и проходит через слой катионита в направлении сверху вниз. При этом происходит умягчение воды путем обмена ионов кальция и магния на эквивалентное количество ионов натрия-катионитовой загрузки.

Цикл работы фильтра состоит из следующих операций: умягчение, взрыхление, регенерация, отмывка.

Рабочий цикл фильтра заканчивается, когда жесткость фильтра начнет превышать 0,1 мг-экв/л. Продолжительность взрыхления 15-30 минут при интенсивности 3-4 л/м 2 .Взрыхление предназначено для устранения уплотнения катионита. Регенерация катионита проводится с целью обогащения его ионами натрия и производится 5-8%-ным раствором NaCl. После регенерации в направлении сверху вниз ионообменный материал отмывается от регенерационного раствора и продуктов регенерации.

Номенклатура и общая характеристика фильтров ФИПа I

Обозначение
типоразмера

Рабочее
давление,
МПа

Условный
диаметр
фильтра, мм

Высота фильтрующего
слоя, мм, не более

Производительность,
м 3 /ч

Масса
комплекта,
кг

ФИПа I-0,5-0,6 Na

ФИПа I-0,7-0,6 Na

ФИПа I-1,0-0,6 Na

ФИПа I-1,4-0,6 Nа

ФИПа I-1,5-0,6 Nа

ФИПа I-2,0-0,6 Na

ФИПа I-2,6-0,6 Na

ФИПа I-3,0-0,6 Na

ФИПа I-3,4-0,6 Na

Фильтры натрий-катионитовые параллельно-точные II -ой ступени ФИПа II

Фильтры ионитные параллельно-точные второй ступени ФИПа II, предназначены для работы в различных схемах установок глубокого умягчения и полного химического обессоливания для второй и третей ступени Na- и Н-катионирования и анионирования. Используются на водоподготовительных установках электростанций, промышленных и отопительных котельных.

Устройство

Ионитные параллельно-точные фильтры второй ступени представляют собой вертикальные однокамерные аппараты. Каждый фильтр состоит из корпуса, нижнего и верхнего распределительных устройств, трубопроводов и запорной арматуры, пробоотборного устройства и фильтрующей загрузки.

Рис. 2. Фильтр натрий-катионитовый параллельно-точные 2-ой ступени ФИПа II

Цикл работы ионитных параллельно-точных фильтров второй ступени состоит из следующих операций:

  • катионирование (анионирование);
  • взрыхление;
  • регенерация;
  • отмывка.

Ионирование происходит следующим образом: вода, прошедшая обработку на ионитных параллельно-точных фильтрах первой ступени, поступает в фильтр и проходит через слой зернистого оинообменного материала в направлении сверху вниз. При этом катионит поглащает из воды ионы Ca 2+ , Mg 2+ и заменяет их эквивалентным количеством ионов H + или Na + . Анионы кислот, образовавшиеся при водород-катионировании (SO 4 2- , Cl - , SiO 3 2-) задерживаются анионитом.

Взрыхление предназначено для устранения уплотнения ионообменного материала, препятствующего свободному доступу регенерационного раствора к его зернам.

Регенерация катионита для обогащения его ионами Na + и H + производится растворами соответственно NaCl (5-8 %-ным) и H 2 SO 4 (1-2 %-ным), регенерация анионита для обогащения его ионами ОН - - раствором NaOH.

Отмывка ионообменного материала от регенерационного раствора и продуктов регенерации обессоленной воды происходит в направлении сверху вниз.

Номенклатура и общая характеристика фильтров ФИПа II

Обозначение
типоразмера

Рабочее
давление,
МПа

Условный
диаметр
фильтра, мм

Высота фильтрующего
слоя, мм, не более

Производительность,
м 3 /ч

Масса
комплекта,
кг

ФИПа II-1,0-0,6 Na

ФИПа II-1,4-0,6 Na

ФИПа II-1,5-0,6 Na

ФИПа II-2,0-0,6 Na

Нижнее и верхнее распределительное устройство

Важным условием, обеспечивающим качество процесса фильтрации, является выбор нижнего дренажно-распределительного устройства (НДРУ). Выбор НДРУ значительно влияет на гидравлические процессы протекания обрабатываемой воды через фильтрующий материал и процесс регенерации, а, значит, и качество работы фильтра.

Нижнее и верхнее дренажно-распределительное устройство предназначено для сбора и отвода из фильтра воды или регенерационного раствора, а также для подвода отмывочной воды или регенерационного раствора.

Указания по монтажу натрий-катионитовых фильтров ФИПа

Монтаж и установка в проектное положение фильтров, должны производиться заказчиком этого оборудования или привлекаемыми им организациями по утвержденному проекту производства монтажных работ, разработанному с учетом требований РД 34.15.027-93 «Сварка, термообработка и контроль трубных систем котлов и трубопроводов при монтаже и ремонте оборудования электростанций» (РТМ-1 с 2002 г.) Москва ПИО ОБТ 2002 г.

Собранная в систему коммуникаций котельной трубопроводная обвязка фильтра подвергается испытаниям на прочность и плотность гидроиспытанием давлением (см. табл.), при этом температура воды должна быть в пределах от 5°С до 40°С, а температура воздуха не должна быть менее 5° С. Время выдержки под пробным давлением - 10 мин.

Подготовка фильтра к работе

1. Перед загрузкой фильтрующего материала в фильтр необходимо:

подачей воды через дренажную систему убедиться в том, что в верхнем и нижнем распределительных устройствах отверстия не засорены и система работает равномерно.

2. Для натрий-катионитного фильтра применяются следующие фильтрующие материалы: сульфоуголь, катионит КУ-2.

3. Во избежание повреждения колпачков, первый слой катионита (20-40 мм) уложить с особой осторожностью. Катиониты, обладающие значительной способностью к набуханию, загружать в фильтр, частично заполненный водой. Загруженный в фильтр катионит не должен содержать пылевидных частиц с диаметром менее 0,25 мм. Однако, катионит с содержанием их не свыше 5% допускается к загрузке, но в этом случае пылевидные частицы необходимо при наладке фильтра удалить промывкой током воды вверх. Коэффициент неоднородности зерен катионита должен быть не менее 2.

4. Загрузку катионита производить слоями по 75-100 мм.

5. После укладки каждого слоя взрыхлять его током воды снизу вверх и отмывать от пылевидных частиц до полного осветления промывной воды.

6. Загрузку катионита вести до тех пор, пока поверхность его в фильтре не станет на 70-100 мм ниже проектной отметки.

7. Снова взрыхлить весь слой катионита в течение 20-35 мин. По окончании взрыхления вода в фильтре опускается ниже поверхности катионита и верхний слой (30-35 мм) удаляется из фильтра.

8. Люк фильтра заболтить и приступить к отмывке катионита от кислоты.

Порядок работы катионитных фильтров

1. Работа катионитных фильтров заключается в периодическом осуществлении следующих операций, составляющих полный рабочий цикл фильтра:

Умягчение обрабатываемой воды;
- взрыхление катионита;

Регенерация атионита;
- отмывка катионита.

2. Взрыхление катионита производить перед каждой регенерацией восходящим током осветленной воды. Для этого сначала открыть вентили на трубопроводе подачи воды в фильтр и на воздушнике. Затем медленно открыть вентиль трубопровода взрыхляющей воды. Длительность взрыхления составляет 15-30 мин. при интенсивности 3-5 л/м 2 и контролируется по степени осветленности сливной воды в дренаж. Если по истечении 15 минут после начала взрыхления осветление воды не наступило, то взрыхление воды продолжить. По окончании взрыхления закрыть вентиль на сливном трубопроводе, а затем вентиль на линии подачи исходной воды в фильтр.

3. По окончании взрыхления катионит регенерировать раствором поваренной соли для восстановления обменной способности. Открыть вентиль на трубопроводе регенерационного раствора поваренной соли и вентиль на линии отвода регенерационного раствора. Длительность регенерации катионита составляет 10-15 мин. Во время регенерации следить за тем, чтобы в фильтре был подпор воды, который проверяется с помощью воздушника и манометра.

4. По окончании подачи раствора поваренной соли осуществить отмывку катионита. Закрыть вентиль на трубопроводе поваренной соли. Открыть вентиль в верхнем трубопроводе исходной воды. Отмывку катионита вести до тех пор, пока жесткость сливной воды на выходе из фильтра не будет отвечать норме.

5. Умягчение обрабатываемой воды. При работе фильтра в нем всегда должен быть подпор воды. 2-3 раза в смену при помощи воздушника, проверять наличие подпора и удалять накопившийся воздух. Во время работы фильтра периодически отбирать пробы умягченной воды для анализа. При повышении жесткости умягченной воды до величины, превышающей норму, фильтр отключить на регенерацию, т.е. повторить операции, описанные выше.

Основным назначением химводоочистки является подготовка воды для питания паровых котлов среднего давления 4,0 МПа, очистка от загрязнений производственного конденсатов, идущего на питание паровых котлов.

На проектируемой ТЭЦ в состав химводоочистки входят следующие объекты:

1. Установка получения обессоленной воды. Получение обессоленной воды достигается последовательным проведением следующих технологических операций:

Очистка исходной речной воды известкованием и коагуляцией в осветлителях;

Фильтрационное осветление воды, прошедшей осветлитель, на механических фильтрах;

Обработка воды методом ионного обмена на водород-катионитовых и анионитовых фильтрах первой и второй ступени с декарбонизацией после анионитовых фильтров первой ступени;

Аминирование обессоленной воды.

Необходимость удаления из воды грубодисперсных и коллоидных примесей на стадии предварительной очистки воды вытекает из требований улучшения показателей качества воды для последующих стадий очистки на ионообменных материалах.

Предварительная очистка воды осуществляется путем ее известкования и коагуляции. При этом, наряду с удалением коллоидных веществ, происходит снижение карбонатной (временной) жесткости, щелочности, содержания железа, кремнекислоты, окисляемости и величины сухого остатка.

Эти процессы осуществляются в осветлителях.

Качество обработанной в осветлителе воды определяется по следующим показателям:

Жесткость;

Щелочность общая и гидратная;

Для контроля работы осветлителя в исходной и известкованно-коагулированной воде дополнительно определяются:

Окисляемость.

На протекание процесса обработки исходной воды известкованием и коагуляцией влияют следующие факторы: качество исходной воды, ее температура, использование ранее выпавшего шлама в качестве контактной среды, применение флокулянта, стабильность дозирования реагентов, стабильность расхода воды, подаваемой в осветлитель, степень удаления воздуха в воздухоотделителе.

В воде многих поверхностных источников в период паводка резко снижается щелочность и одновременно увеличиваются содержание взвесей и кремнекислоты (в т.ч. нереакционноспособной), окисляемость и цветность. Чтобы при этом сохранить требуемый эффект очистки воды, бывает необходимым изменение дозы реагентов. В результате состав и свойства образующегося осадка существенно изменяются.

При подогреве обрабатываемой воды ускоряются процессы химического взаимодействия и кристаллизации образующихся веществ, улучшаются условия выделения осадка из-за уменьшения вязкости воды. Вследствие этого интенсифицируются процессы обработки воды, что позволяет уменьшить расчетную длительность пребывания воды в осветлителе и увеличить допустимую скорость движения воды через него.

Оптимальная температура воды находится в пределах от 30 до 40ºС и уточняется в процессе наладки. Увеличение температуры способствует более эффективному умягчению воды.

Содержащиеся в осветленной воде взвешенные вещества при движении через фильтрующий материал задерживаются им, и вода осветляется. Извлечение механических примесей из воды вследствие их прилипания к зернам фильтрующего материала происходит под действием сил адгезии. Вода при движении через фильтрующий материал преодолевает сопротивление, возникающее в результате трения ее о поверхность зерен фильтрующего материала, что характеризуется так называемой величиной потери напора. Поэтому поступающая на фильтр вода должна иметь давление, превышающее потерю напора в фильтре.

Удаление катионов и анионов производится с помощью ионообменных материалов. Удаление растворенных газов (СО 2) производится путем декарбонизации воды.

Удаление из воды истинно-растворенных примесей (катионов и анионов) осуществляется путем фильтрования воды через материал, способный обменивать часть своих ионов на ионы, растворенные в воде. Такие зернистые материалы называют ионитами или ионообменными материалами.

Декарбонизацией называется процесс удаления из воды свободной угольной кислоты, которая образуется в значительном количестве при Н-катионировании воды.

Удаление угольной кислоты необходимо во избежание преждевременного срабатывания анионитовых фильтров II-ой ступени и производится путем продувки воздуха через воду.

При этом углекислота, находящаяся в воде, приходит в равновесие с углекислотой, содержащейся в воздухе. Так как парциональное давление углекислоты в воздухе мало, содержание ее в воде может быть снижено до 2-3 мг/л.

Остаточное содержание углекислоты зависит от температуры воды, величины поверхности контакта с воздухом, расхода воздуха на продувку.

Для предотвращения углекислотной коррозии оборудования паро-конденсатного тракта и тракта питательной воды на электростанциях применяется аммиачная обработка обессоленной воды.

Перечень основного оборудования обессоливающей установки, включая предочистку.

Таблица 5.4.1

Наименование оборудования

Техническая характеристика

Назначение оборудования

      Осветлитель № 1 типа ЦНИИ-1

Q = 50 м 3 /час

Используется в качестве резервной емкости для хранения исходной (речной) воды

      Осветлитель № 2 типа ЦНИИ-1

Q = 50 м 3 /час

Для удаления коллоидных, мелко и грубодисперсных примесей, снижения жесткости

Баки известкованно-коагулированной воды

Фильтр механический (осветлительный)

Осветление известкованно-коагулированной воды. Загружен гидроантрацитом.

4.1. Насос известкованно-коагулированной воды типа Д50-12

Q=50 м 3 /час

Н = 12 м.в.ст.

Ø 2600 мм – 1 шт.

4.2. Насос известкованно-коагулированной воды типа Д60-17

Q = 600 м 3 /час

Н = 17 м.в.ст.

Подача известкованно-коагулированной воды на механические фильтры

Н-катионитовый фильтр I-ой ступени

Удаление из обрабатываемой воды катионов жесткости и большей части катионов натрия.

Анионитовый фильтр I-ой ступени

Удаление из обрабатываемой воды анионов сильных кислот.

Загружен слабоосновным анионитом.

Н-катионитовый фильтр II-ой ступени

Удаление из обрабатываемой воды остаточных катионов жесткости и натрия после Н-катионитовых фильтров I-ой ступени. Загружен сильнокислотным катионитом.

Анионитовый фильтр II-ой ступени

Удаление из обрабатываемой воды анионов слабых кислот и анионов сильных кислот, попадающих в воду при выходе на регенерацию анионитовых фильтров I-ой ступени.

Продолжение табл. 5.4.1

Декарбонизатор

серии В239

Q = 50 м 3 /час

Удаление углекислоты из частично обессоленной воды после анионитовых фильтров 1-ой ступени

Бак декарбонизирован-ной воды

Промежуточная емкость для сбора декарбонизированной воды.

Бак обессоленной воды

Промежуточная емкость для сбора и хранения обессоленной воды.

Насос декарбонизи-рованной воды типа Д50-15

Q=50 м 3 /час

Н = 15 м.в.ст.

Подача декарбонизированной воды на фильтры II-ой ступени.

Насос химобессоленной воды типа Х50-12

Q=50 м 3 /час

Н = 12 м.в.ст.

Подача химобессоленной воды в главный корпус в деаэраторы питания котлов.


Установка очистки производственного конденсата (конденсатоочистка) производительностью до 100 м 3 /час. Конденсатоочистка ТЭЦ предназначена для очистки горячего производственного конденсата (температура 100 0 С), поступающего с гидролизного завода и деревообрабатывающего комбината, конденсата дренажного бака и бака низких точек из главного корпуса. Очищенный производственный конденсат используется в качестве добавки в питательную воду котлов.

Очистка конденсата производится на угольных и Na-катионитовых фильтрах.

Таблица 5.4.2

Перечень основного оборудования конденсатоочистки.

Наименование оборудования

Техническая характеристика

Назначение оборудования

Угольный фильтр

Н сл = 2500 мм

уголь БАУ с размером зерен 1-3,5 мм

Обезмасливание конденсата

Nа-катионитовый фильтр

Н сл КУ-2-8 – 1 м

Н сл С-100 – 0,6 м

Умягчение конденсата

Бак загрязненного конденсата

Сбор конденсата для очистки

Насос загрязненного конденсата

Q = 50-70 м 3 /час

Подача загрязненного конденсата на фильтры

Насос очищенного конденсата

типа 4НДВ

Q = 50-70 м 3 /час

Подача очищенного конденсата в главный корпус

Химическая водоочистка (ХВО) современными методами и технологиями обеспечивает долгую и успешную жизнь котельному оборудованию, выгодное использование средств, исключение постоянного технического контроля и сервиса, так как предотвращает поломки, связанные с качеством питающей воды. Основной задачей систем водоподготовки для котельных является предотвращение образования накипи и последующего развития коррозии на внутренней поверхности котлов, трубопроводов и теплообменников. Такие отложения могут стать причиной потери мощности, а развитие коррозии может привести к полной остановке работы котельной из-за закупоривания внутренней части оборудования. Водоподготовке уделяется особое внимание, поскольку качественно подготовленное тепловое оборудование является залогом бесперебойной работы котельных в течение отопительного сезона. Следует иметь в виду, что водоподготовка обладает рядом особенностей, и способы очистки и подготовки воды, разработанные для крупных электростанций, не всегда применимы в отношении промышленных котельных.

Какие бывают посторонние примеси в воде?

Вода является одновременно универсальным растворителем и дешёвым теплоносителем, тем не менее она же может стать причиной поломки парового или водогрейного котла. В первую очередь, риски связаны с наличием в воде различных примесей. Предотвратить и решить проблемы связанные с работой котельного оборудования возможно только при чётком понимании причин их возникновения.

Можно выделить три основные группы посторонних примесей в воде:

  • нерастворимые механические
  • коррo зионноактивные
  • растворённые осадкo образующие

Любой тип примесей может стать причиной выхода из строя оборудования тепловой установки, а также снижения эффективности и стабильности работы котла. Применение в тепловых системах воды, не прошедшей предварительную механическую фильтрацию, приводит к более грубым поломкам - выводу из строя циркуляционных насосов, повреждению трубопроводов, уменьшению сечения, регулирующей и запорной арматуры.

Обычно в качестве механических примесей выступают глина и песок, присутствующие практически в любой воде, а также продукты коррозии теплo передающих поверхностей, трубопроводов и других металлических частей системы, находящихся в постоянном контакте с агрессивной водой.

Растворённые в воде примеси являются причиной серьёзных неполадок в работе энергетического оборудования:

  • образование нa кипных отложений;
  • коррозия котловой системы;
  • вспенивание котловой воды и выносом солей с паром.

К растворенным примесям требуется особое внимание, поскольку их присутствие в воде не так заметно, как наличие механических примесей, а последствия их воздействия могут быть весьма неприятными - от снижения энергoэффективности системы до частичного или полного её разрушения.

Карбонатные отложения, вызванные осадочным образованиями жесткой воды (накипеобразование). Процесс накипеобразования, протекающий даже в низкотемпературном теплообменном оборудовании, далеко не единственный. Так, при повышении температуры воды свыше 130°С происходит снижение растворимости сульфата кальция, а также образуется особо плотная накипь гипса.

Образовавшиеся отложения накипи приводят к увеличению теплопотерь и снижению теплоотдачи теплообменных поверхностей, что провоцирует нагрев стенок котла, и, как следствие, уменьшение срока его службы.

Ухудшение процесса теплообмена приводит к увеличению расходов энергоносителей и увеличению затрат на эксплуатацию. Осадочные слои на нагревательных поверхностях даже незначительной толщины (0,1-0,2 мм) приводят к перегреву металла и появлению свищей, o тдулин и в некоторых случаях даже разрыву труб.
Образование накипи свидетельствует об использовании воды низкого качества в котловой системе. В этом случае велика вероятность развития коррозии металлических поверхностей, накопления продуктов окисления металлов и накипных отложений.

В котловых системах проходят два типа коррозионных процессов:

  • химическая коррозия;
  • электрохимическая коррозия (образование большого количества микрогa льванических пар на металлических поверхностях).

Электрохимическая коррозия часто появляется из-за неполного удаления из воды таких примесей, как марганец и железо. В большинстве случаев коррозия образуется в нe плотностях металлических швов и развальцованных концов теплообменных труб, в результате чего образуются кольцевые трещины. Основными стимуляторами образования коррозии являются растворённый углекислый газ и кислород.

Стоит уделить особое внимание поведению газов в котловых системах. Повышение температуры приводит к снижению растворимости газов в воде - происходит их десорбция из котловой воды. Этот процесс обуславливает высокую коррозионную активность диоксида углерода и кислорода. При нагреве и испарении воды гидрокарбонаты начинают разлагаться на диоксид углерода и карбонаты, уносимые вместе с паром, вследствие чего обеспечивается низкий pН и высокие показатели коррозионной активности конденсата. Выбирая схемы внутpикотловой обработки и химводoочистки, следует учитывать способы нейтрализации диоксида углерода и кислорода.

Еще один вид химической коррозии - хлоp идная коррозия. Хлориды благодаря своей высокой растворимости присутствуют практически во всех доступных источниках водоснабжения. Хлориды вызывают разрушение пассивирующей плёнки на поверхности металла, чем провоцируют образование вторичных коррозионных процессов. Максимально допустимая концентрация хлоридов в воде котловых систем составляет 150-200 мг/л.

Результатом использования в котловой системе воды низкого качества (нестабильной, химически агрессивной) являются коррозионные и накипеобp азовательные процессы. Эксплуатация котловых систем при использовании такой воды опасна с точки зрения техногенных рисков и экономически нецелесообразна. Гарантия производителей котельного оборудования не распространяется на случаи, связанные с использованием в котлах неочищенной и неправильно подготовленной воды.

Какая бывает вода?

Чаще всего в качестве источников водоснабжения котловых систем используются артезианские скважины или водопровод. Каждый вид воды имеет свои недостатки.

Основной проблемой воды являются соли магния и кальция, показывающие общую жёсткость. Контролирование качества воды котловых систем производится путём экспp есс-тестов или лабораторных анализов.

Лабораторные анализы водогрейных систем средней мощности выполняют при каждом плановом осмотре или обслуживании, но не реже 3-х раз в год, а для промышленных проводят раз в смену. Лабораторный анализ для паровых котлов проводится раз в 72 часа, при анализе обычно берется несколько проб воды - котловая вода, вода после ХВО, конденсат. Базовый набор экспресс-тестов и карманных измерителей желательно иметь каждому специалисту по эксплуатации котлов, в то время как лабораторные анализы рекомендуется проводить в специальных лабораториях. Для проведения экспресс-тестов используют капельные экспресс-системы для выявления показателей жёсткости воды, щёлочности, содержания железа и хлоридов. Результаты анализов могут служить ориентиром для оценки качества котловой воды и повышения эффективности работы системы химводоочиc тки.

Как получить правильную воду

Котловые системы подразделяют на паровые и водогрейные. Для каждого типа котла предусмотрен свой набор требований к x имочищенной воде, которые напрямую зависят от температурного режима и мощности котла.

Качество воды для котловых систем устанавливается на уровне, обеспечивающем безопасную и эффективную работу котла при минимальных рисках коррозии и образования отложений. Надзорные органы осуществляют разработку официальных требований (Гoсэнергонадзор). Расход подпиточнoй воды и предъявленные требования к её качеству помогают создать оптимальный набор водоочистного оборудования и правильно подобрать химводоoчистительную схему. Особое внимание во всех нормативных документах по качеству подпитoчной воды уделяется таким показателям как содержание кислорода, pН, углекислоты. Показатели качества воды для котлов во всех нормативных документах существенно ниже требований к качеству питьевой воды.